Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Interactions Of (My) 6 (M = Zn, Cd; Y = O, S, Se) Quantum Dots With N-Bases, Mariusz Michalczyk, Wiktor Zierkiewicz, Steve Scheiner Apr 2019

Interactions Of (My) 6 (M = Zn, Cd; Y = O, S, Se) Quantum Dots With N-Bases, Mariusz Michalczyk, Wiktor Zierkiewicz, Steve Scheiner

Chemistry and Biochemistry Faculty Publications

(MY)6 clusters, with M = Zn and Cd and Y = O, S, Se, form double-layer drum-like structures containing M–Y covalent bonds. The positive regions near the M atoms attract the N atom of both NH3 and NMe3 so as to form a noncovalent M···N bond. This bond is quite strong, with interaction energies exceeding 35 kcal/mol. The bond strength diminishes with reduced electronegativity of the Y atom (O > S > Se) and is stronger for M = Zn than for Cd. Trimethylation of the base enhances the bond strength. The interaction is dominated by the electrostatic component …


Schrödinger, 3, David Peak Aug 2017

Schrödinger, 3, David Peak

Schrodinger

The 3D infinite square well: quantum dots, wells, and wires

In the preceding discussion of the Schrödinger Equation the particle of interest was assumed to be “moving in the x -direction.” Of course, it is not possible for a particle to be moving in one spatial direction only. If that were true, according to the HUP it could be anywhere in the y - and z -directions and therefore be undetectable with finite volume detectors. Now, we consider the more realistic case of motion in all three spatial directions. For this purpose, we start with the 3D infinite square well. …


Carrier Capture Dynamics Of Single Ingaas/Gaas Quantum-Dot Layers, K. N. Chauhan, D. Mark Riffe, E. A. Everett, D. J. Kim, H. Yang, F. K. Shen Jan 2013

Carrier Capture Dynamics Of Single Ingaas/Gaas Quantum-Dot Layers, K. N. Chauhan, D. Mark Riffe, E. A. Everett, D. J. Kim, H. Yang, F. K. Shen

All Physics Faculty Publications

Using 800 nm, 25-fs pulses from a mode locked Ti:Al2O3 laser, we have measured the ultrafast opticalreflectivity of MBE-grown, single-layer In0.4Ga0.6As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with initial InGaAs thickness and …