Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Electrostatic Discharge In Spacecraft Materials, Jennifer Roth, Jr Dennison, Ryan C. Hoffman, David Peak May 2009

Electrostatic Discharge In Spacecraft Materials, Jennifer Roth, Jr Dennison, Ryan C. Hoffman, David Peak

Senior Theses and Projects

Understanding the characteristics of electron beam bombardment that induce electrostatic discharge (ESD) of insulating materials is crucial to constructing an electrically stable spacecraft. A measurement system has been designed to determine the beam energy and charge flux densities at which typical spacecraft materials intended for the James Webb Space Telescope (JWST) undergo ESD. Because discharge events occur over time intervals ranging from nanoseconds to minutes, multiple detection methods were employed as charge was accumulated on a sample surface; these methods included monitoring of sample current and optical emissions from the sample surface. Each sample was also examined with optical microscopy …


Temperature Dependence Of Radiation Induced Conductivity In Insulators, Jr Dennison, Jodie Corbridge Gillespie, Joshua Hodges, Ryan C. Hoffman, J Abott, Steven Hart, Alan W. Hunt Jan 2009

Temperature Dependence Of Radiation Induced Conductivity In Insulators, Jr Dennison, Jodie Corbridge Gillespie, Joshua Hodges, Ryan C. Hoffman, J Abott, Steven Hart, Alan W. Hunt

Journal Articles

We report on measurements of Radiation Induced Conductivity (RIC) of thin film Low Density Polyethylene (LDPE) samples. RIC occurs when incident ionizing radiation deposits energy in a material and excites electrons into conduction states. RIC is calculated as the difference in sample conductivity under an incident flux and “dark current” conductivity under no incident radiation.

The primary focus of this study is the temperature dependence of the steady state RIC over a wide range of absorbed dose rates, from cryogenic temperatures to well above room temperature. The measured RIC values are compared to theoretical predictions of dose rate and temperature …


Engineering Tool For Temperature, Electric Field And Dose Rate Dependence Of High Resistivity Spacecraft Materials, Jr Dennison, Steven Hart, Jodie Corbridge Gillespie, Justin Dekany, Charles Sim, Dan Arnfield Jan 2009

Engineering Tool For Temperature, Electric Field And Dose Rate Dependence Of High Resistivity Spacecraft Materials, Jr Dennison, Steven Hart, Jodie Corbridge Gillespie, Justin Dekany, Charles Sim, Dan Arnfield

Conference Proceedings

An engineering tool has been developed to predict the equilibrium resistivity of common spacecraft insulating materials as a function of electric field (Ε), temperature (T), and adsorbed dose rate (Ď) based on parameterized, analytic functions used to model an extensive data set taken by the Utah State University Materials Physics Group. The ranges of E, T and Ď measured in the experiments were designed to cover as much of the ranges typically encountered in space environments as possible: (i) the typical electric field range was from 104 V-m-1 to 107 V-m-1 or from <0.1% up to between 30% to 90%of the electrostatic breakdown field strength; (ii) temperature was measured and modeled over a typical range of 150 K to 330 K (within limits noted below); and the adsorbed dose rate was measured and modeled over a range of 10-5 Gray …


Measurement Of Charging And Discharging Of High Resistivity Materials Spacecraft Materials By Electron Beams, Ryan Hoffmann, Joshua L. Hodges, Jesse Hayes, Jr Dennison Jan 2009

Measurement Of Charging And Discharging Of High Resistivity Materials Spacecraft Materials By Electron Beams, Ryan Hoffmann, Joshua L. Hodges, Jesse Hayes, Jr Dennison

Conference Proceedings

New instrumentation has been developed for in situ measurements of the electron beam- induced surface voltage of high resistivity spacecraft materials in an existing ultra-high vacuum electron emission analysis chamber. Design details, calibration and characterization measurements of the system are presented, showing sensitivity to a range of surface voltages from12000 V, with resolution surface, using a paddle attached to a vacuum compatible stepper motor mounted within a hemispherical grid retarding field analyzer. These electrodes formed one end of a floating charge transfer probe that enabled measurements to be made by a standard electrostatic field probe external to the vacuum chamber. …