Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Series

2017

Schrödinger

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Schrödinger, 5, David Peak Aug 2017

Schrödinger, 5, David Peak

Schrodinger

Transitions


Schrödinger, 4, David Peak Aug 2017

Schrödinger, 4, David Peak

Schrodinger

The sanitized hydrogen atom: separating the variables

Separation of variables in the Schrödinger Equation for the hydrogen problem requires expressing Ψ as a product, Ψ(r,θ,φ,t) = R(r)Θ(θ )Φ(φ)T(t) , substituting into the partial differential equation [(5) in Sc3], and then dividing by Ψ. As in the square well problems, the separation constant for the t part of the separation is the particle’s eigen-energy, E.


Schrödinger, 2, David Peak Aug 2017

Schrödinger, 2, David Peak

Schrodinger

The finite square well

The infinite square well potential energy rigorously restricts the associated wavefunction to an exact region of space: it is infinitely “hard.” Potential energies encountered in more realistic physical scenarios are “softer” in that they permit wavefunctions to spread throughout less well-defined regions. An important toy example of the latter is the finite square well. In this problem, the potential energy function is U(x) = 0, if 0 < x < L, and U0 otherwise.


Schrödinger, 3, David Peak Aug 2017

Schrödinger, 3, David Peak

Schrodinger

The 3D infinite square well: quantum dots, wells, and wires

In the preceding discussion of the Schrödinger Equation the particle of interest was assumed to be “moving in the x -direction.” Of course, it is not possible for a particle to be moving in one spatial direction only. If that were true, according to the HUP it could be anywhere in the y - and z -directions and therefore be undetectable with finite volume detectors. Now, we consider the more realistic case of motion in all three spatial directions. For this purpose, we start with the 3D infinite square well. …