Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Selected Works

Magnetic

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Equatorial Ionospheric Electric Fields During The November 2004 Magnetic Storm, Bela G. Fejer, J. W. Jensen, T. Kikuchi, M. A. Abdu, J. L. Chau Oct 2007

Equatorial Ionospheric Electric Fields During The November 2004 Magnetic Storm, Bela G. Fejer, J. W. Jensen, T. Kikuchi, M. A. Abdu, J. L. Chau

Bela G. Fejer

[1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November 7 main phase of the storm, when the southward IMF, the solar wind and reconnection electric fields, and the polar cap potential drops had very large and nearly steady values. This result …


Evolution Of Equatorial Ionospheric Bubbles During A Large Auroral Electrojet Increase In The Recovery Phase Of A Magnetic Storm, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer, J. Emmert Feb 2006

Evolution Of Equatorial Ionospheric Bubbles During A Large Auroral Electrojet Increase In The Recovery Phase Of A Magnetic Storm, M. J. Keskinen, S. L. Ossakow, Bela G. Fejer, J. Emmert

Bela G. Fejer

[1] We present a model and observations of the evolution of equatorial ionospheric bubbles during a large auroral electrojet (AE) index increase in the recovery phase of a geomagnetic storm. Using a three-dimensional time-dependent numerical simulation model, we find, for the 19–21 October 1998 storm, that the equatorial bubble evolution is different during storm time as compared to quiet time conditions. We have found that the storm time vertical drift in conjunction with reduced off-equatorial E region shorting is the primary mechanism that distinguishes the large AE increase recovery phase storm time evolution from the quiet time case. Comparison of …


Magnetospheric Electric Fields And Plasma Sheet Injections To Low-Lshells During The June 4-5, 1991 Magnetic Storm: Comparison Between The Rice Convectionmodel And Observations, T. W. Garner, R. A. Wolf, R. W. Spiro, W. J. Burke, Bela G. Fejer, S. Sazykin, J. L. Roeder, M. R. Hairston Jan 2004

Magnetospheric Electric Fields And Plasma Sheet Injections To Low-Lshells During The June 4-5, 1991 Magnetic Storm: Comparison Between The Rice Convectionmodel And Observations, T. W. Garner, R. A. Wolf, R. W. Spiro, W. J. Burke, Bela G. Fejer, S. Sazykin, J. L. Roeder, M. R. Hairston

Bela G. Fejer

[1] The major magnetic storm of 4–5 June 1991 was well observed with the Combined Release and Radiation Experiment (CRRES) satellite in the duskside inner magnetosphere and with three Defense Meteorological Satellite Program (DMSP) spacecraft in the polar ionosphere. These observations are compared to results from the Rice Convection Model (RCM), which calculates the inner magnetospheric electric field and particle distribution self-consistently. This case study, which uses the most complete RCM runs to date, demonstrates two significant features of magnetospheric storms, the development of subauroral polarization streams (SAPS) and plasma-sheet particle injection deep into the inner magnetosphere. In particular, the …


Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert Dec 2003

Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert

Bela G. Fejer

[1] Low-latitude ionospheric electric fields and currents are often strongly disturbed during periods of enhanced geomagnetic activity. These perturbations can last for several hours after geomagnetic quieting. We use incoherent scatter radar measurements from Jicamarca and Arecibo during 19–21 October 1998 to study, for the first time, the low-latitude disturbance electric fields during the recovery phase of a large magnetic storm. On 19 October the Jicamarca data showed initially large and short-lived (time scale of about 10–20 min) upward and westward drift perturbations in the early afternoon sector, due to the penetration of strong magnetospheric electric fields probably driven by …


Equatorial Electricfields During Magnetically Disturbed Conditions, 1. The Effect Of The Interplanetary Magneticfield, Bela G. Fejer, C. A. Gonzales, D. T. Farley, M. C. Kelley, R. F. Woodman Sep 1979

Equatorial Electricfields During Magnetically Disturbed Conditions, 1. The Effect Of The Interplanetary Magneticfield, Bela G. Fejer, C. A. Gonzales, D. T. Farley, M. C. Kelley, R. F. Woodman

Bela G. Fejer

Radar measurements of E and F region drift velocities have been used to look for correlations between changes in equatorial electric fields and the interplanetary magnetic field (IMF). The east-west component of the IMF appears to be unimportant, but the north-south component has some effect; rapid reversals from south to north are sometimes correlated with reversals of the equatorial east-west electric field during both daytime and nighttime. This is not always true, however, the IMF may reverse without any apparent effect at the equator. Furthermore, large equatorial field perturbations are sometimes observed when the IMF Bz is large and southward …


Equatorialelectric Fields During Magnetically Disturbed Conditions, 2. Implications Of Simultaneousauroral And Equatorial Measurements, C. A. Gonzales, M. C. Kelley, Bela G. Fejer, J. F. Vickrey, R. F. Woodman Jan 1979

Equatorialelectric Fields During Magnetically Disturbed Conditions, 2. Implications Of Simultaneousauroral And Equatorial Measurements, C. A. Gonzales, M. C. Kelley, Bela G. Fejer, J. F. Vickrey, R. F. Woodman

Bela G. Fejer

Simultaneous auroral and equatorial electric field data are used along with magnetic field data to study anomalous electric field patterns during disturbed times. During some substorms, accompanied by ring current activity, the worldwide equatorial zonal electric field component reverses from the normal pattern. This is interpreted as a partial closure of high latitude field aligned currents in the dayside, low latitude ionosphere. These currents flow westward across the dayside. In several cases the zonal equatorial electric field component was nearly identical in form to the zonal auroral component, indicating the close electrical coupling between these regions. Less certain, but equally …