Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Selected Works

Latitude

Articles 1 - 10 of 10

Full-Text Articles in Physical Sciences and Mathematics

Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert Dec 2003

Low Latitude Ionospheric Disturbance Electric Field Effects Duringthe Recovery Phase Of The October 19-21, 1998 Magnetic Storm, Bela G. Fejer, J. T. Emmert

Bela G. Fejer

[1] Low-latitude ionospheric electric fields and currents are often strongly disturbed during periods of enhanced geomagnetic activity. These perturbations can last for several hours after geomagnetic quieting. We use incoherent scatter radar measurements from Jicamarca and Arecibo during 19–21 October 1998 to study, for the first time, the low-latitude disturbance electric fields during the recovery phase of a large magnetic storm. On 19 October the Jicamarca data showed initially large and short-lived (time scale of about 10–20 min) upward and westward drift perturbations in the early afternoon sector, due to the penetration of strong magnetospheric electric fields probably driven by …


Altitude Dependence Of Middleand Low-Latitude Thermospheric Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim Jan 2002

Altitude Dependence Of Middleand Low-Latitude Thermospheric Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, G. G. Shepard, B. H. Solheim

Bela G. Fejer

[1] Thermospheric neutral winds exhibit strong altitudinal and latitudinal variation during geomagnetically quiet and active times. We use daytime middle and low-latitude neutral winds measured by the Wind Imaging Interferometer (WINDII) instrument on board the Upper Atmosphere Research Satellite (UARS) over the 90–275 km height range to study the altitude and season dependent climatology of disturbance winds (i.e., with quiet time patterns removed) in magnetic coordinates. The daytime perturbations winds are generally equatorward and westward and decrease toward the magnetic equator. Both the zonal and meridional components decrease sharply below 120 km and are essentially insignificant below 100 km. The …


Climatology Of Mid- And Low-Latitude F Region Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, C. G. Fesen, G. G. Shepherd, B. H. Solheim Nov 2001

Climatology Of Mid- And Low-Latitude F Region Disturbance Winds Measured By Windii, J. T. Emmert, Bela G. Fejer, C. G. Fesen, G. G. Shepherd, B. H. Solheim

Bela G. Fejer

No abstract provided.


Radar Studies Of Mid-Latitude Ionospheric Plasma Drifts, L. Scherliess, Bela G. Fejer, J. Holt, L. Goncharenko, C. Armory-Mazaudier, M. J. Buonsanto Feb 2001

Radar Studies Of Mid-Latitude Ionospheric Plasma Drifts, L. Scherliess, Bela G. Fejer, J. Holt, L. Goncharenko, C. Armory-Mazaudier, M. J. Buonsanto

Bela G. Fejer

We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional E × B drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the …


Simulation Of The Prereversalenhancement In The Low Latitude Vertical Drifts, C. G. Fesen, R. G. Noble, A. D. Richmond, G. Crowley, Bela G. Fejer Jul 2000

Simulation Of The Prereversalenhancement In The Low Latitude Vertical Drifts, C. G. Fesen, R. G. Noble, A. D. Richmond, G. Crowley, Bela G. Fejer

Bela G. Fejer

Low latitude F region ion motions exhibit strong seasonal and solar cycle dependences. The pre-reversal enhancement (PRE) in the vertical ion drifts is a particularly well-known low latitude electrodynamic feature, exhibited as a sharp upward spike in the velocity shortly after local sunset, which remains poorly understood theoretically. The PRE has been successfully simulated for the first time by a general circulation model, the National Center for Atmospheric Research thermosphere/ionosphere/electrodynamic general circulation model (TIEGCM). The TIEGCM reproduces the zonal and vertical plasma drifts for equinox, June, and December for low, medium, and high solar activity. The crucial parameter in the …


Equatorial And Low Latitude Thermospheric Winds: Measured Quiet Time Variations With Season And Solar Flux From 1980 To 1990, M. A. Biondi, S. Y. Sazykin, Bela G. Fejer, J. W. Meriwether, C. G. Fesen Aug 1999

Equatorial And Low Latitude Thermospheric Winds: Measured Quiet Time Variations With Season And Solar Flux From 1980 To 1990, M. A. Biondi, S. Y. Sazykin, Bela G. Fejer, J. W. Meriwether, C. G. Fesen

Bela G. Fejer

Thermospheric winds have been systematically determined at Arequipa, Peru, and Arecibo, Puerto Rico, from Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630 nm line. The wind databases (1983 – 1990 at Arequipa and 1980 – 1990 at Arecibo) have been edited to eliminate measurements during geomagnetically disturbed conditions, then sorted by season and solar flux level. Following this, they were averaged to obtain the climatological behavior of the nighttime wind variations at the two locations. A new averaging technique, multivariate regression analysis, has been applied to the data, and the results compared to our prior binning averages. The …


Mid- And Low-Latitude Prompt-Penetration Ionospheric Zonalplasma Drifts, Bela G. Fejer, L. Scherliess Aug 1998

Mid- And Low-Latitude Prompt-Penetration Ionospheric Zonalplasma Drifts, Bela G. Fejer, L. Scherliess

Bela G. Fejer

We have used ion drift observations from the DE-2 satellite to determine the latitudinal variation and the temporal evolution of mid- and low-latitude prompt penetration zonal plasma drifts driven by magnetospheric electric fields. Our results indicate that sudden increases in convection lead to predominantly westward perturbation drifts which decrease equartorwards and have largest amplitudes in the dusk-midnight sector. The diurnal perturbation drift patterns shift to later local times with increasing storm time and decay to new quasi-equilibrium values in about 2 hours, as the ring current readjusts to the new polar cap potential. The daily and latitudinal variations and temporal …


Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer May 1998

Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer

Bela G. Fejer

We use low- and mid-latitude zonal ion drift observations from the DE-2 satellite and auroral electrojet indices to study the temporal and latitudinal variations of F-region perturbation drifts during magnetically disturbed conditions. These perturbation drifts are driven by magnetospheric and ionospheric disturbance dynamo electric fields with time constants from less than one to several hours. We determine, initially, the drift patterns due to the prompt penetration of magnetospheric electric fields and of longer lasting disturbances. In this study, we concentrate on the properties of the longer lasting perturbations which occur with latitude-dependent time delays after enhancements in the high-latitude ionospheric …


Lowand Mid-Latitude Ionospheric Electric Fields During The January 1984 Gismos Campaign, Bela G. Fejer, M. C. Kelley, C. Senior, O. De La Beaujardiere, J. A. Holt, C. A. Tepley, R. Burnside, M. A. Abdu, J. H.A. Sobral, R. F. Woodman, Y. Kamide, R. Lepping Mar 1990

Lowand Mid-Latitude Ionospheric Electric Fields During The January 1984 Gismos Campaign, Bela G. Fejer, M. C. Kelley, C. Senior, O. De La Beaujardiere, J. A. Holt, C. A. Tepley, R. Burnside, M. A. Abdu, J. H.A. Sobral, R. F. Woodman, Y. Kamide, R. Lepping

Bela G. Fejer

This paper examines in detail the electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17–19, 1984, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. We study the penetration of both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres. In the dusk sector, a large perturbation of the zonal equatorial electric field was observed in the absence of similar changes at low and middle latitudes in the same longitudinal …


An Empirical Model Of Quiet Dayionospheric Electric Fields Of Middle And Low Latitudes, A. D. Richmond, M. Blanc, B. A. Emery, R. H. Wand, Bela G. Fejer, R. F. Woodland, S. Ganguly, P. Amyenc, R. A. Behnke, C. Calderon, J. V. Evans Sep 1980

An Empirical Model Of Quiet Dayionospheric Electric Fields Of Middle And Low Latitudes, A. D. Richmond, M. Blanc, B. A. Emery, R. H. Wand, Bela G. Fejer, R. F. Woodland, S. Ganguly, P. Amyenc, R. A. Behnke, C. Calderon, J. V. Evans

Bela G. Fejer

Seasonally averaged quiet-day F region ionospheric E × B drift observations from the Millstone Hill, St. Santin, Arecibo, and Jicamarca incoherent scatter radars are used to produce a model of the middle and low-latitude electric field for solar minimum conditions. A function similar to an electrostatic potential is fitted to the data to provide model values continuous in latitude, longitude, time of day, and day of the year. This model is intended to serve as a reference standard for applications requiring global knowledge of the mean electric field or requiring information at some location removed from the observing radars. This …