Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Selected Works

1994

Tunneling microscope

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker Aug 1994

Nanometer Scale Patterning And Oxidation Of Silicon Surfaces With An Ultrahigh Vacuum Scanning Tunneling Microscope, J. W. Lyding, G. C. Abeln, T. -C. Shen, C. Wang, J. R. Tucker

T. -C. Shen

Nanoscale patterning of the Si(100)‐2×1 monohydride surface has been achieved by using an ultrahigh vacuum (UHV) scanning tunneling microscope(STM) to selectively desorb the hydrogen passivation. Hydrogen passivation on silicon represents one of the simplest possible resist systems for nanolithography experiments. After preparing high quality H‐passivated surfaces in the UHV chamber, patterning is achieved by operating the STM in field emission. The field emitted electrons stimulate the desorption of molecular hydrogen, restoring clean Si(100)‐2×1 in the patterned area. This depassivation mechanism seems to be related to the electron kinetic energy for patterning at higher voltages and the electron current for low …