Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos Jul 2015

Geometrization Conditions For Perfect Fluids, Scalar Fields, And Electromagnetic Fields, Charles G. Torre, Dionisios Krongos

Charles G. Torre

Rainich-type conditions giving a spacetime “geometrization” of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from …


A Solution In Weyl Gravity With Planar Symmetry, James Thomas Wheeler May 2015

A Solution In Weyl Gravity With Planar Symmetry, James Thomas Wheeler

James Thomas Wheeler

We solve the Bach equation for Weyl gravity for the case of a static metric with planar symmetry. The solution is not conformal to the solution to the corresponding Einstein equation.


The Spacetime Co-Torsion In Torsion-Free Biconformal Spaces, James Thomas Wheeler Feb 2015

The Spacetime Co-Torsion In Torsion-Free Biconformal Spaces, James Thomas Wheeler

James Thomas Wheeler

In preceding studies, [TR Gamma minus, TR Gamma plus] we showed that the solution for the connection of flat biconformal space also solves the curved space field equations for the torsion and co-torsion. We continued this investigation with an attempt to solve the full set of torsion and co-torsion field equations, with only the assumption of vanishing torsion and the known form of the metric. We successfully reduced the torsion equations to a single equation. Here, we reduce that equation to its essential degrees of freedom. We find that the spacetime co-torsion is entirely determined by the scale vector and …


Variation Of The Weyl Action, James Thomas Wheeler Feb 2015

Variation Of The Weyl Action, James Thomas Wheeler

James Thomas Wheeler

We show how to vary the fourth order Weyl gravity action to derive the Bach equation.


Torsion Free Biconformal Spaces: Reducing The Torsion Field Equations, James Thomas Wheeler Jan 2015

Torsion Free Biconformal Spaces: Reducing The Torsion Field Equations, James Thomas Wheeler

James Thomas Wheeler

Our goal is to solve the full set of torsion and co-torsion field equations of Euclidean biconformal space, with only the assumption of vanishing torsion. Here we begin by resolving the involution constraints, symmetry conditions and torsion field equation into a single equation for further study.


Gauge Theories Of General Relativity, James Thomas Wheeler Nov 2014

Gauge Theories Of General Relativity, James Thomas Wheeler

James Thomas Wheeler

General relativity can be seen as a gauge theory of the Lorentz, Poincaré, Weyl, de Sitter, or conformal groups. In most of these, there is little or no difference from the standard formulation in Riemannian geometry, but the higher symmetries — de Sitter and conformal — introduce new features and explain old ones. The potential presence of a cosmological constant, the spacetime metric, cosmological dust, symplectic structure, Kähler structure and even the existence of a timelike direction can all be seen to arise from the underlying group structure.


Perihelion Precession In General Relativity, Charles G. Torre Apr 2014

Perihelion Precession In General Relativity, Charles G. Torre

Charles G. Torre

This is a Maple worksheet providing a relatively quick and informal sketch of a demonstration that general relativistic corrections to the bound Kepler orbits introduce a perihelion precession. Any decent textbook will derive this result. My analysis aligns with that found in the old text "Introduction to General Relativity", by Adler, Bazin and Schiffer. The plan of the analysis is as follows. * Model the planetary orbits as geodesics in the (exterior) Schwarzschild spacetime. * Compute the geodesic equations. * Simplify them using symmetries and first integrals. * Isolate the differential equation expressing the radial coordinate as a function of …


The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre Feb 2014

The Spacetime Geometry Of A Null Electromagnetic Field, Charles G. Torre

Charles G. Torre

We give a set of local geometric conditions on a spacetime metric which are necessary and sufficient for it to be a null electrovacuum, that is, the metric is part of a solution to the Einstein-Maxwell equations with a null electromagnetic field. These conditions are restrictions on a null congruence canonically constructed from the spacetime metric, and can involve up to five derivatives of the metric. The null electrovacuum conditions are counterparts of the Rainich conditions, which geometrically characterize non-null electrovacua. Given a spacetime satisfying the conditions for a null electrovacuum, a straightforward procedure builds the null electromagnetic field from …