Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Ueb Parallel: Distributed Snow Accumulation And Melt Modeling Using Parallel Computing, Tseganeh Z. Gichamo, David G. Tarboton Dec 2019

Ueb Parallel: Distributed Snow Accumulation And Melt Modeling Using Parallel Computing, Tseganeh Z. Gichamo, David G. Tarboton

Publications

The Utah Energy Balance (UEB) model supports gridded simulation of snow processes over a watershed. To enhance computational efficiency, we developed two parallel versions of the model, one using the Message Passing Interface (MPI) and the other using NVIDIA's CUDA code on Graphics Processing Unit (GPU). Evaluation of the speed-up and efficiency of the MPI version shows that the effect of input/output (IO) operations on the parallel model performance increases as the number of processor cores increases. As a result, although the computation kernel scales well with the number of cores, the efficiency of the parallel code as a whole …


Retrieval Of Intrinsic Mesospheric Gravity Wave Parameters Using Lidar And Airglow Temperature And Meteor Radar Wind Data, Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, Rigel Kivi Nov 2019

Retrieval Of Intrinsic Mesospheric Gravity Wave Parameters Using Lidar And Airglow Temperature And Meteor Radar Wind Data, Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, Rigel Kivi

Publications

We analyse gravity waves in the upper-mesosphere, lower-thermosphere region from high-resolution temperature variations measured by the Rayleigh lidar and OH temperature mapper. From this combination of instruments, aided by meteor radar wind data, the full set of ground-relative and intrinsic gravity wave parameters are derived by means of the novel WAPITI (Wavelet Analysis and Phase line IdenTIfication) method. This WAPITI tool decomposes the gravity wave field into its spectral component while preserving the temporal resolution, allowing us to identify and study the evolution of gravity wave packets in the varying backgrounds. We describe WAPITI and demonstrate its capabilities for the …


Ensemble Streamflow Forecasting Using An Energy Balance Snowmelt Model Coupled To A Distributed Hydrologic Model With Assimilation Of Snow And Streamflow Observations, Tseganeh Zekiewos Gichamo, David G. Tarboton Oct 2019

Ensemble Streamflow Forecasting Using An Energy Balance Snowmelt Model Coupled To A Distributed Hydrologic Model With Assimilation Of Snow And Streamflow Observations, Tseganeh Zekiewos Gichamo, David G. Tarboton

Publications

In many river basins across the world, snowmelt is an important source of streamflow. However, detailed snowmelt modeling is hampered by limited input data and uncertainty arising from inadequate model structure and parametrization. Data assimilation that updates model states based on observations, reduces uncertainty and improves streamflow forecasts. In this study, we evaluated the Utah Energy Balance (UEB) snowmelt model coupled to the Sacramento Soil Moisture Accounting (SAC‐SMA) and rutpix7 stream routing models, integrated within the Research Distributed Hydrologic Model (RDHM) framework for streamflow forecasting. We implemented an ensemble Kalman filter for assimilation of snow water equivalent (SWE) observations in …


Student Insights Report, Fall 2019, The Center For Student Analytics Sep 2019

Student Insights Report, Fall 2019, The Center For Student Analytics

Publications

For the past three years, the staff of the Center for Student Analytics have worked to discover and expose meaningful, data-informed insights into what helps students succeed at Utah State University. The following pages highlight 20 of the most useful insights we found provided here in small sets that will be useful to students, faculty, staff, university leadership, parents, and even prospective students. As you explore this report, we encourage you to see the student data as a window into USU itself. While big data helps us understand how individual students are performing, it tells us a great deal more …


Simultaneous In Situ Measurements Of Small-Scale Structures In Neutral, Plasma, And Atomic Oxygen Densities During The Wadis Sounding Rocket Project, Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, Pierre-Dominique Pautet Sep 2019

Simultaneous In Situ Measurements Of Small-Scale Structures In Neutral, Plasma, And Atomic Oxygen Densities During The Wadis Sounding Rocket Project, Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, Pierre-Dominique Pautet

Publications

In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside …


Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii Sep 2019

Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii

Publications

A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened …


Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 2. Nonlinear Dynamics, Wave Breaking, And Instabilities, David C. Fritts, Ling Wang, Michael J. Taylor, Pierre-Dominique Pautet, Neal R. Criddle, Bernd Kaifler, Stephen D. Eckermann, Ben Liley Aug 2019

Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 2. Nonlinear Dynamics, Wave Breaking, And Instabilities, David C. Fritts, Ling Wang, Michael J. Taylor, Pierre-Dominique Pautet, Neal R. Criddle, Bernd Kaifler, Stephen D. Eckermann, Ben Liley

Publications

Weak cross‐mountain flow over the New Zealand South Island on 21 June 2014 during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) led to large‐amplitude mountain waves in the mesosphere and lower thermosphere. The mesosphere and lower thermosphere responses were observed by ground‐based instruments in the lee of the Southern Alps supporting DEEPWAVE, including an Advanced Mesosphere Temperature Mapper, a Rayleigh lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The character of the mountain wave responses at horizontal scales of ~30–90 km reveals strong “sawtooth” variations in the temperature field suggesting large vertical and horizontal displacements leading to mountain wave overturning. …


Regional Distribution Of Mesospheric Small‐Scale Gravity Waves During Deepwave, Pierre-Dominique Pautet, Michael J. Taylor, S. D. Eckermann, Neal R. Criddle Jul 2019

Regional Distribution Of Mesospheric Small‐Scale Gravity Waves During Deepwave, Pierre-Dominique Pautet, Michael J. Taylor, S. D. Eckermann, Neal R. Criddle

Publications

The Deep Propagating Gravity Wave Experiment project took place in June and July 2014 in New Zealand. Its overarching goal was to study gravity waves (GWs) as they propagate from the ground up to ~100 km, with a large number of ground‐based, airborne, and satellite instruments, combined with numerical forecast models. A suite of three mesospheric airglow imagers operated onboard the NSF Gulfstream V (GV) aircraft during 25 nighttime flights, recording the GW activity at OH altitude over a large region (>7,000,000 km2). Analysis of this data set reveals the distribution of the small‐scale GW mean power …


A Performance Comparison Of Machine Learning Algorithms For Arced Labyrinth Spillways, Fernando Salazar, Brian M. Crookston Mar 2019

A Performance Comparison Of Machine Learning Algorithms For Arced Labyrinth Spillways, Fernando Salazar, Brian M. Crookston

Publications

Labyrinth weirs provide an economic option for flow control structures in a variety of applications, including as spillways at dams. The cycles of labyrinth weirs are typically placed in a linear configuration. However, numerous projects place labyrinth cycles along an arc to take advantage of reservoir conditions and dam alignment, and to reduce construction costs such as narrowing the spillway chute. Practitioners must optimize more than 10 geometric variables when developing a head–discharge relationship. This is typically done using the following tools: empirical relationships, numerical modeling, and physical modeling. This study applied a new tool, machine learning, to the analysis …


Thermal Structure Of The Mesopause Region During The Wadis-2 Rocket Campaign, Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, Franz-Josef Lübken Jan 2019

Thermal Structure Of The Mesopause Region During The Wadis-2 Rocket Campaign, Raimund Wörl, Boris Strelnikov, Timo P. Viehl, Josef Höffner, Pierre-Dominique Pautet, Michael J. Taylor, Yucheng Zhao, Franz-Josef Lübken

Publications

This paper presents simultaneous temperature measurements by three independent instruments during the WADIS-2 rocket campaign in northern Norway (69 N, 14 E) on 5 March 2015. Vertical profiles were measured in situ with the CONE instrument. Continuous mobile IAP Fe lidar (Fe lidar) measurements during a period of 24 h, as well as horizontally resolved temperature maps by the Utah State University (USU) Advanced Mesospheric Temperature Mapper (AMTM) in the mesopause region, are analysed. Vertical and horizontal temperature profiles by all three instruments are in good agreement. A harmonic analysis of the Fe lidar measurements shows the presence …


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …