Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Presentations

2016

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Plasma Deflection Test Setup For E-Sail Propulsion Concept, Allen Andersen, Jason Vaughn, Todd Schneider, Ken Wright Oct 2016

Plasma Deflection Test Setup For E-Sail Propulsion Concept, Allen Andersen, Jason Vaughn, Todd Schneider, Ken Wright

Presentations

The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe …


Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alex Souvall, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger, Jr Dennison Oct 2016

Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alex Souvall, Takuyuki Sakai, Takahiro Shimizu, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger, Jr Dennison

Presentations

An initial limited set of tests of germination rate and seed growth in a controlled environment have identified statistically significant differences between control samples and seed flown in a Russian LEO research flight. Most significantly, average seed germination of space borne seeds was 2 days less than the 6 days for the control seeds. Modification of the seed coat leading to enhanced rate of water uptake, as a result of radiation from the space environment or abrasion due to launch vibrations, is hypothesized to cause early germination. High school students will conduct growth tests on seeds exposed to simulated space …


Instrumentation Enhancements For Electron Yield Measurements Of Extremely Low-Conductivity High-Yield Dielectrics, Justin Christensen, Gregory Wilson, Jr Dennison May 2016

Instrumentation Enhancements For Electron Yield Measurements Of Extremely Low-Conductivity High-Yield Dielectrics, Justin Christensen, Gregory Wilson, Jr Dennison

Presentations

Electron yield, a material dependent property which describes how it will charge under incident electron irradiation of a given energy, is defined as the number of electrons emitted from a material per incident electron. While very important for spacecraft charging modelling, the measurement of electron yield for insulating materials is very challenging because insulators quickly charge up under electron irradiation, thereby modifying the yield measurements.

Improved techniques have been implemented to reduce charging with each yield measurement, as well as to neutralize acquired charge between measurements. The goal is to determine the “intrinsic yield” (yield of uncharged insulator). New analysis …


Determining Intrinsic Electron Emission Yields Of High Resistivity Ceramic Materials, Jr Dennison, Justin Christensen, Justin Dekany Apr 2016

Determining Intrinsic Electron Emission Yields Of High Resistivity Ceramic Materials, Jr Dennison, Justin Christensen, Justin Dekany

Presentations

We describe and contrast methods for measuring the intrinsic—or zero-accumulated charge limit—electron emission yields of highly insulating materials with relatively large yields. The intrinsic electron yield is an essential measure of how charge will accumulate in such materials exposed to space environment fluxes and for predicting and mitigating spacecraft charging effects. There are three commonly used methods to determine the intrinsic electron yield: (i) the DC-yield method, which ratios constant incident and emission currents; (ii) the pulsed-yield method, which ratios integrated charge of short-duration, low-current pulses, thereby minimizing the amount of charge being deposited into the material during a measurement, …


Extremely Low Secondary Electron Emission From Metal/Dielectric Particulate Coatings, Isabel Montero, L Aguilera, Leandro Olano, María E. Dávila, Luis Galán, Jr Dennison, Gregory Wilson Apr 2016

Extremely Low Secondary Electron Emission From Metal/Dielectric Particulate Coatings, Isabel Montero, L Aguilera, Leandro Olano, María E. Dávila, Luis Galán, Jr Dennison, Gregory Wilson

Presentations

Research on low secondary electron emission coatings is essential for the design and manufacture of space high-power RF devices without multipactor discharge. This paper discusses some of the factors that reduce secondary electron emission for metal-dielectric surfaces. We have studied the total electron yield (TEY) behavior of a particulate coating composed of a mixture of a metal (aluminum) nanoparticulates in solid state contact with a particulate dielectric material (polyimide thermosetting resin). Surface charging, roughness, and volume fraction are utilized as the main parameters to characterize the electron emission behavior, which can effectively be determined by continuous (total dose 42.5 nC/mm …


Validation Of Enhanced Electron Yield Measurements Of Low-Conductivity, High-Yield Materials, Justin Christensen, Gregory Wilson, Jr Dennison Apr 2016

Validation Of Enhanced Electron Yield Measurements Of Low-Conductivity, High-Yield Materials, Justin Christensen, Gregory Wilson, Jr Dennison

Presentations

Materials exposed to electron bombardment can charge positively or negatively, depending on the number of electrons ejected from the material. This electron emission is the main mechanism which drives spacecraft charging, which can induce electrostatic breakdown of insulators and damage pertinent electrical, optical, and mechanical components. The electron yield (ratio of emitted to incident electrons) is an intrinsic property which characterizes how a material will charge under these types of conditions. However electron yield of insulators is very difficult to measure because measurement causes charge buildup.

To measure the intrinsic yield (yield of uncharged material) of insulators new methods have …


Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison Apr 2016

Perspectives On The Distributions Of Esd Breakdowns For Spacecraft Charging Applications, Allen Andersen, Krysta Moser, Jr Dennison

Presentations

Electrostatic discharge (ESD) continues to pose significant risks to space missions despite decades of intense study. We emphasize here the advantages to spacecraft designers and modelers from considering the stochastic distributions of breakdown and how it can be affected by factors including spacecraft environment conditions, design geometries, material temperature, material purity, charging history, and appropriate timescales. Spacecraft charging models and spacecraft designs typically rely on tabulated values or ranges of breakdown strength, often based on cursory measurements with little or no experimental detail. Depending on the timescales and history of environmental and orbital changes or durations of specific missions, it …


Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison Apr 2016

Dependence Of Electrostatic Field Strength On Voltage Ramp Rate For Spacecraft Materials, Krysta Moser, Allen Andersen, Jr Dennison

Presentations

This work investigated the dependence of electrostatic field strength for spacecraft materials on voltage ramp rate, by applying an increasing electrostatic field until electrostatic breakdown (a permanent, catastrophic failure of a dielectric material) occurs. Enhanced understanding of prolonged exposure to high static electric fields (DC aging) of insulating materials based on expanded experimental studies is of critical to understand the physics of highly disordered insulating materials, as well as for applications in spacecraft charging, high voltage DC power transmission cables and switching, thin film dielectrics, and semiconductor devices and sensors. Electrostatic discharge (ESD) and the associated material breakdown at the …


Pea System Modeling And Signal Processing For Measurement Of Volume Charge Distributions In Thin Dielectric Films, Lee H. Pearson, Jr Dennison, Erick W. Griffiths, A. C. Pearson Apr 2016

Pea System Modeling And Signal Processing For Measurement Of Volume Charge Distributions In Thin Dielectric Films, Lee H. Pearson, Jr Dennison, Erick W. Griffiths, A. C. Pearson

Presentations

This paper discusses an effort to develop advanced pulsed electroacoustic (PEA) measurement system capabilities that incorporate state-of-the-art hardware and improved signal processing and modeling to characterize embedded charge distributions in thin dielectric films. Objectives in developing this system include: (1) improved spatial resolution, while maintaining reasonable temporal resolution; (2) improved signal processing tools for increased signal/noise ratios; (3) integrated PEA modeling tools; and (4) integrated environmental controls. We emphasize system improvements required to achieve high spatial resolution for in vacuo measurements of thin dielectrics charged using electron beam injection, which are most applicable for spacecraft charging tests. PEA measurement systems …


Absolute Electron Emission Calibration: Round Robin Tests Of Au And Polyimide, Jr Dennison, Justin Christensen, Justin Dekany, Clint Thomson, Neal Nickles, Robert E. Davies, Mohamed Belhai, Kazuhiro Toyoda, Arifur R. Khan, Kazutaka Kawasaki, Shunsuke Inoue, Isabel Montero, Maria E. Davila, Leandro Olano Apr 2016

Absolute Electron Emission Calibration: Round Robin Tests Of Au And Polyimide, Jr Dennison, Justin Christensen, Justin Dekany, Clint Thomson, Neal Nickles, Robert E. Davies, Mohamed Belhai, Kazuhiro Toyoda, Arifur R. Khan, Kazutaka Kawasaki, Shunsuke Inoue, Isabel Montero, Maria E. Davila, Leandro Olano

Presentations

Accurate determination of the absolute electron yields of conducting and insulating materials are essential for models of spacecraft charging and related processes involving charge accumulation and emission due to electron beams and plasmas. Apparatus using low-fluence pulsed electron beam sources and various methods to minimize charge accumulation have been developed at facilities around the world. This study presents a round robin comparison of such tests performed in CSIC at Instituto de Ciencia de Materiales de Madrid, LaSeine at Kyushu Institute of Technology, DESSE at ONEREA, and the Space Environment Effects Materials (SEEM) test facility at Utah State University. The primary …


Temporal And Spatial Correlations In Electron-Induced Arcs Of Adjacent Dielectric Islands, Justin Christensen, Jr Dennison, Justin Dekany Apr 2016

Temporal And Spatial Correlations In Electron-Induced Arcs Of Adjacent Dielectric Islands, Justin Christensen, Jr Dennison, Justin Dekany

Presentations

This study investigates very short duration (

The data for this project were collected at Marshall Space Flight Center. The epoxy “glue dot” samples were mounted inside a high vacuum (<10-4 Pa) chamber on a Black Kapton substrate attached to a large grounded metal plate, cooled with liquid nitrogen to ~120 K. An electron gun was used to bombard the sample with electrons of a known energy (12 to 40 keV) and flux density (0.3 to 5 nA/cm2), similar to what would be seen in a typical space environment. Light emitted from the samples was monitored with …


The First Calibration Of Sbf Using Multi-Conjugate Adaptive Optics, Zachary Gibson, Joseph B. Jenson, John P. Blakeslee, Mischa Schirmer Jan 2016

The First Calibration Of Sbf Using Multi-Conjugate Adaptive Optics, Zachary Gibson, Joseph B. Jenson, John P. Blakeslee, Mischa Schirmer

Presentations

We measured Surface Brightness FluctuaIons (SBF) in three galaxies, ESO137-G006, NGC 3309, and NGC 5128, using the GeMS MulI-Conjugate AdapIve OpIcs (MCAO) system on the Gemini South telescope. ESO137-G006 is located in the Norma Cluster, NGC 3309 is located in the Hydra Cluster, while NGC 5128, also known as Centaurus A, is a nearby galaxy with numerous other distance measurements, including Cepheids. These galaxies were observed as a path finder to establish the SBF technique using the MCAO system. The J and Ks-band images taken with MCAO were astrometrically corrected and combined using the THELI so_ware.1 This method allowed us …


Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alexander Souvall, Jr Dennison, Takayuki Sakai, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger Jan 2016

Space Environment Effects Of Ionizing Radiation On Seed Germination And Growth, Alexander Souvall, Jr Dennison, Takayuki Sakai, Yuta Takahashi, Midori Morikawa, Shusuke Okita, Akihiro Nagata, Toshihiro Kameda, Shaunda Wenger

Presentations

No abstract provided.