Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Bela G. Fejer

Selected Works

Satellite

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Radar And Satellite Global Equatorial F-Region Vertical Drift Model, L. Scherliess, Bela G. Fejer Apr 1999

Radar And Satellite Global Equatorial F-Region Vertical Drift Model, L. Scherliess, Bela G. Fejer

Bela G. Fejer

We present the first global empirical model for the quiet time F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite. This analytical model, based on products of cubic-B splines and with nearly conservative electric fields, describes the diurnal and seasonal variations of the equatorial vertical drifts for a continuous range of all longitudes and solar flux values. Our results indicate that during solar minimum, the evening prereversal velocity enhancement exhibits only small longitudinal variations during equinox with amplitudes of about 15–20 m/s, is …


Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer May 1998

Satellite Studies Of Mid- And Low-Latitude Ionospheric Disturbancezonal Plasma Drifts, L. Scherliess, Bela G. Fejer

Bela G. Fejer

We use low- and mid-latitude zonal ion drift observations from the DE-2 satellite and auroral electrojet indices to study the temporal and latitudinal variations of F-region perturbation drifts during magnetically disturbed conditions. These perturbation drifts are driven by magnetospheric and ionospheric disturbance dynamo electric fields with time constants from less than one to several hours. We determine, initially, the drift patterns due to the prompt penetration of magnetospheric electric fields and of longer lasting disturbances. In this study, we concentrate on the properties of the longer lasting perturbations which occur with latitude-dependent time delays after enhancements in the high-latitude ionospheric …


Observationsof Inner-Plasmasphere Irregularities With A Satellite Beacon Interferometer Array, A. R. Jacobsen, G. Hogeveen, R. C. Carlos, G. Wu, Bela G. Fejer, M. C. Kelley Sep 1996

Observationsof Inner-Plasmasphere Irregularities With A Satellite Beacon Interferometer Array, A. R. Jacobsen, G. Hogeveen, R. C. Carlos, G. Wu, Bela G. Fejer, M. C. Kelley

Bela G. Fejer

A radio-interferometer array illuminated by 136-MHz beacons of several geosynchronous satellites has been used to study small (≥ 1013 m−2) transient disturbances in the total electron content along the lines of sight to the satellites. High-frequency (ƒ> 3 mHz) electron content oscillations are persistently observed, particularly during night and particularly during geomagnetically disturbed periods. The oscillations move across the array plane at speeds in the range 200–2000 m/s, with propagation azimuths that are strongly peaked in lobes toward the western half-plane. Detailed analysis of this azimuth behavior, involving comparison between observations on various satellite positions, indicates compellingly that the phase …


Incoherent Scatter Radar, Ionosonde,And Satellite Measurements Of Equatorial F Region Vertical Plasma Drifts In The Evening Sector, Bela G. Fejer, E. R. De Paula, L. Scherliess, I. S. Batista Jul 1996

Incoherent Scatter Radar, Ionosonde,And Satellite Measurements Of Equatorial F Region Vertical Plasma Drifts In The Evening Sector, Bela G. Fejer, E. R. De Paula, L. Scherliess, I. S. Batista

Bela G. Fejer

Studies of equatorial F region evening vertical plasma drifts using different measurement techniques have produced conflicting results. We examine the relationship of incoherent scatter radar and ionosonde drift observations over the Peruvian equatorial region, and AE-E satellite drifts for different geophysical conditions. Our data show that there is large day-to-day variability on the ratios of radar and ionosonde drifts, but on the average the measurements from these two techniques are in fair agreement during low and moderate solar flux conditions. For high solar activity, however, the Jicamarca evening drifts during equinox and December solstice are significantly larger than the ionosonde …


Global Equatorial Ionosphericvertical Plasma Drifts Measured By The Ae-E Satellite, Bela G. Fejer, E. R. De Paula, R. A. Heelis, W. B. Hanson Jan 1995

Global Equatorial Ionosphericvertical Plasma Drifts Measured By The Ae-E Satellite, Bela G. Fejer, E. R. De Paula, R. A. Heelis, W. B. Hanson

Bela G. Fejer

Ion drift meter observations from the Atmosphere Explorer E satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes ≤ 7.5°) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diurnal, seasonal, and solar cycle dependence of the longitudinally averaged drifts are consistent with results from the Jicamarca radar except …