Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Assessing & Protecting Dark Night Skies In El Morro National Monument, Leslie Kobinsky Dec 2019

Assessing & Protecting Dark Night Skies In El Morro National Monument, Leslie Kobinsky

All Graduate Plan B and other Reports, Spring 1920 to Spring 2023

Light pollution is causing the disappearance of dark night skies around the world. In the United States alone, 1/3 of people are unable to see the Milky Way where they live (Ramlagan, 2016). National Park Service sites contain some of the darkest skies in the country. Here at El Morro National Monument, these dark skies are a beautiful and healthy benefit to people in the local community and visitors traveling from afar. El Morro’s current park legislation does not include specific measures of protection for the night sky. This capstone project will create a baseline data set of night sky …


Meps Data Assimilation System, Robert W. Schunk, Larry Gardner Nov 2019

Meps Data Assimilation System, Robert W. Schunk, Larry Gardner

Browse all Datasets

For the current funding opportunity we propose to develop a master system that will enhance the user interface to the MEPS model and enable the scientific community to efficiently use the model. Furthermore, we will build and automate validation tools and improve the efficiency and robustness of the MEPS ensemble averaging scheme. Finally, we will explore the nest step toward a major advancement in MEPS b significantly improving the spatial resolution of one of the data assimilation models to explore meso- and small-scale features.


Simultaneous In Situ Measurements Of Small-Scale Structures In Neutral, Plasma, And Atomic Oxygen Densities During The Wadis Sounding Rocket Project, Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, Pierre-Dominique Pautet Sep 2019

Simultaneous In Situ Measurements Of Small-Scale Structures In Neutral, Plasma, And Atomic Oxygen Densities During The Wadis Sounding Rocket Project, Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, Pierre-Dominique Pautet

Publications

In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside …


A Near Horizon Extreme Binary Black Hole Geometry, Jacob Ciafre, Maria J. Rodriguez Sep 2019

A Near Horizon Extreme Binary Black Hole Geometry, Jacob Ciafre, Maria J. Rodriguez

All Physics Faculty Presentations

A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a non-supersymmetric, near horizon extreme binary black hole geometry of two uncharged black holes. The black holes are co-rotating, their relative distance is fixed, and the solution is uniquely specified by the mass. Asymptotically, the geometry corresponds to the near horizon extreme Kerr (NHEK) black hole. The binary extreme system has finite entropy.


Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii Sep 2019

Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii

Publications

A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened …


"Collaborative Research: Cedar--Airglow Imaging Of Gravity Wave And Instability Dynamics,", Michael Taylor Sep 2019

"Collaborative Research: Cedar--Airglow Imaging Of Gravity Wave And Instability Dynamics,", Michael Taylor

Funded Research Records

No abstract provided.


Regional Distribution Of Mesospheric Small‐Scale Gravity Waves During Deepwave, Pierre-Dominique Pautet, Michael J. Taylor, S. D. Eckermann, Neal R. Criddle Jul 2019

Regional Distribution Of Mesospheric Small‐Scale Gravity Waves During Deepwave, Pierre-Dominique Pautet, Michael J. Taylor, S. D. Eckermann, Neal R. Criddle

Publications

The Deep Propagating Gravity Wave Experiment project took place in June and July 2014 in New Zealand. Its overarching goal was to study gravity waves (GWs) as they propagate from the ground up to ~100 km, with a large number of ground‐based, airborne, and satellite instruments, combined with numerical forecast models. A suite of three mesospheric airglow imagers operated onboard the NSF Gulfstream V (GV) aircraft during 25 nighttime flights, recording the GW activity at OH altitude over a large region (>7,000,000 km2). Analysis of this data set reveals the distribution of the small‐scale GW mean power …


On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau Jun 2019

On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau

All Physics Faculty Publications

In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. …


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …