Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Modeling Spiral Galaxy Luminosity Profiles, Jordan Rozum, Matt Garlock, Shane L. Larson, Bradley W. Carroll Oct 2012

Modeling Spiral Galaxy Luminosity Profiles, Jordan Rozum, Matt Garlock, Shane L. Larson, Bradley W. Carroll

Browse All Undergraduate research

The distribution of spiral and bar galaxy inclination an- gles is expected to be uniform. However, analysis of sev- eral major galaxy catalogs shows this is not the case; galaxies oriented near edge-on are significantly more common in these catalogs. In an attempt to explain this discrepancy, we have developed a galaxy simulation code to compute the appearance of a spiral type galaxy as a function of its morphological parameters. We examine the dependence of observed brightness upon inclination angle by using smooth luminous mass density and in- terstellar medium (ISM) density distributions. The lu- minous mass component is integrated …


Characterizing Sky Variability For Multi-Messenger Astronomy, Rachel Nydegger, Katie Breivik, Shane L. Larson Oct 2012

Characterizing Sky Variability For Multi-Messenger Astronomy, Rachel Nydegger, Katie Breivik, Shane L. Larson

Browse All Undergraduate research

Multi-messenger astronomy employs both electromagnetic and gravitational wave detectors to paint a richer picture of celestial objects, providing more depth and in formation. Localizing sources with gravitational wave interferometers on the sky is difficult, with resolution of many square degrees. To have simultaneous electromagnetic observations (localized typically to less than one square degree) requires innovative techniques for the telescopes to find the origin of radiation. One idea is to tile the view of the interferometer, using multiple telescopes to simultaneously point at different areas of the field to observe the source. One problematic aspect of this observing paradigm is distinguishing …


Low Earth Orbiting Photographer (Leop) Cube Satellite, Jan J. Sojka, J. Alex Landon Apr 2012

Low Earth Orbiting Photographer (Leop) Cube Satellite, Jan J. Sojka, J. Alex Landon

Posters

The exploration and study of space is critical for the future of our society, but the opportunities for educational institutions to get involved in space research have faded dramatically in the last decade with the retirement of the space shuttle program. The USU Get Away Special (GAS) team is designing a new, low cost solution to space research, CubeSat (Cube Satellite). This small satellite, with a volume of approximately one liter, will have a high resolution camera directed at earth, and students will be able to request a picture of their area when the satellite flies overhead. In this way, …