Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Astrophysics and Astronomy

Publications

Gravity Wave Breaking

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii Sep 2019

Large‐Amplitude Mountain Waves In The Mesosphere Observed On 21 June 2014 During Deepwave: 1.Wave Development, Scales, Momentum Fluxes, And Environmental Sensitivity, Michael J. Taylor, Pierre-Dominique Pautet, David C. Fritts, Bernd Kaifler, Steven M. Smith, Yucheng Zhao, Neal R. Criddle, Pattilyn Mclaughlin, William R. Pendleton Jr., Michael P. Mccarthy, Gonzalo Hernandez, Stephen D. Eckermann, James Doyle, Markus Rapp, Ben Liley, James M. Russell Iii

Publications

A remarkable, large‐amplitude, mountain wave (MW) breaking event was observed on the night of 21 June 2014 by ground‐based optical instruments operated on the New Zealand South Island during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Concurrent measurements of the MW structures, amplitudes, and background environment were made using an Advanced Mesospheric Temperature Mapper, a Rayleigh Lidar, an All‐Sky Imager, and a Fabry‐Perot Interferometer. The MW event was observed primarily in the OH airglow emission layer at an altitude of ~82 km, over an ~2‐hr interval (~10:30–12:30 UT), during strong eastward winds at the OH altitude and above, which weakened …