Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau Jun 2019

On The Balance Between Plasma And Magnetic Pressure Across Equatorial Plasma Depletions, J. Rodríguez-Zuluaga, C. Stolle, Y. Yamazaki, H. Lühr, J. Park, Ludger Scherliess, J. L. Chau

All Physics Faculty Publications

In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. …


Does The Black Hole Shadow Probe The Event Horizon Geometry?, Pedro V. P. Cunha, Carlos A. R. Herdeiro, Maria J. Rodriguez Apr 2018

Does The Black Hole Shadow Probe The Event Horizon Geometry?, Pedro V. P. Cunha, Carlos A. R. Herdeiro, Maria J. Rodriguez

All Physics Faculty Publications

There is an exciting prospect of obtaining the shadow of astrophysical black holes (BHs) in the near future with the Event Horizon Telescope. As a matter of principle, this justifies asking how much one can learn about the BH horizon itself from such a measurement. Since the shadow is determined by a set of special photon orbits, rather than horizon properties, it is possible that different horizon geometries yield similar shadows. One may then ask how sensitive is the shadow to details of the horizon geometry? As a case study, we consider the double Schwarzschild BH and analyze the impact …


How Hospitable Are Space Weather Affected Habitable Zones? The Role Of Ion Escape, Vladimir S. Airapetian, Alex Glocer, George V. Khazanov, Robert O Parke Loyd, Kevin France, Jan Josef Sojka, William C. Danchi, Michael W. Liemohn Feb 2017

How Hospitable Are Space Weather Affected Habitable Zones? The Role Of Ion Escape, Vladimir S. Airapetian, Alex Glocer, George V. Khazanov, Robert O Parke Loyd, Kevin France, Jan Josef Sojka, William C. Danchi, Michael W. Liemohn

All Physics Faculty Publications

Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape …


Climatology Of Plasmaspheric Total Electron Content Obtained From Jason 1 Satellite, Ja Soon Shim, Geonhwa Jee, Ludger Scherliess Feb 2017

Climatology Of Plasmaspheric Total Electron Content Obtained From Jason 1 Satellite, Ja Soon Shim, Geonhwa Jee, Ludger Scherliess

All Physics Faculty Publications

We used more than 40 million total electron content (TEC) measurements obtained from the GPS TurboRogue Space Receiver receiver on board the Jason 1 satellite in order to investigate the global morphology of the plasmaspheric TEC (pTEC) including the variations with local time, latitude, longitude, season, solar cycle, and geomagnetic activity. The pTEC corresponds to the total electron content between Jason 1 (1336 km) and GPS (20,200 km) satellite altitudes. The pTEC data were collected during the 7 year period from January 2002 to December 2008. It was found that pTEC increases by about 10–30% from low to high solar …


Prospects For Observing Ultracompact Binaries With Space-Based Gravitational Wave Interferometers And Optical Telescopes., T. B. Littenberg, Shane L. Larson, G. Nelemans Department Of Astrophysics, Radboud University Nijmegen, N. J. Cornish Mar 2013

Prospects For Observing Ultracompact Binaries With Space-Based Gravitational Wave Interferometers And Optical Telescopes., T. B. Littenberg, Shane L. Larson, G. Nelemans Department Of Astrophysics, Radboud University Nijmegen, N. J. Cornish

All Physics Faculty Publications

Space-based gravitational wave interferometers are sensitive to the galactic population of ultra-compact binaries. An important subset of the ultra-compact binary popula- tion are those stars that can be individually resolved by both gravitational wave in- terferometers and electromagnetic telescopes. The aim of this paper is to quantify the multi-messenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher Information Matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg2 and bright enough to …


Constraining The Black Hole Mass Spectrum With Gravitational Wave Observations – I. The Error Kernel, Danny C. Jacobs, Joseph E. Plowman, Ronald W. Hellings, Sachiko Tsuruta, Shane L. Larson Feb 2010

Constraining The Black Hole Mass Spectrum With Gravitational Wave Observations – I. The Error Kernel, Danny C. Jacobs, Joseph E. Plowman, Ronald W. Hellings, Sachiko Tsuruta, Shane L. Larson

All Physics Faculty Publications

Many scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many of these formation scenarios predict a high-redshift population of intermediate-mass black holes (IMBHs), with masses M in the range 102M≲ 105 M. A powerful way to observe these IMBHs is via gravitational waves the black holes emit as they merge. The statistics of the observed black hole population should, in principle, allow us to discriminate between competing astrophysical scenarios for the origin and formation of SMBHs. However, …


Detecting A Stochastic Gravitational-Wave Background: The Overlap Reduction Function, Lee Samuel Finn, Shane L. Larson, Joseph D. Romano Jan 2009

Detecting A Stochastic Gravitational-Wave Background: The Overlap Reduction Function, Lee Samuel Finn, Shane L. Larson, Joseph D. Romano

All Physics Faculty Publications

Detection of a gravitational-wave stochastic background via ground or space-based gravitational-wave detectors requires the cross correlation of the response of two or more independent detectors. The cross correlation involves a frequency-dependent factor—the so-called overlap reduction function or Hellings-Downs curve—that depends on the relative geometry of each detector pair, i.e., the detector separations and the relative orientation of their antenna patterns (beams). An incorrect formulation of this geometrical factor has appeared in the literature, leading to incorrect conclusions regarding the sensitivity of proposed detectors to a stochastic gravitational-wave background. To rectify these errors and as a reference for future work we …


Gravitational Wave Bursts From The Galactic Massive Black Hole, Clovis Hopman, Marc Freitag, Shane L. Larson Jun 2007

Gravitational Wave Bursts From The Galactic Massive Black Hole, Clovis Hopman, Marc Freitag, Shane L. Larson

All Physics Faculty Publications

The Galactic massive black hole (MBH), with a mass of M= 3.6 × 106 M, is the closest known MBH, at a distance of only 8 kpc. The proximity of this MBH makes it possible to observe gravitational waves (GWs) from stars with periapse in the observational frequency window of the Laser Interferometer Space Antenna (LISA). This is possible even if the orbit of the star is very eccentric, so that the orbital frequency is many orders of magnitude below the LISA frequency window, as suggested by Rubbo, Holley-Bockelmann & Finn (2006). …


Semi-Relativistic Approximation To Gravitational Radiation From Encounters With Non-Spinning Black Holes, Jonathan R. Gair, Daniel J. Kennefick, Shane L. Larson Jan 2005

Semi-Relativistic Approximation To Gravitational Radiation From Encounters With Non-Spinning Black Holes, Jonathan R. Gair, Daniel J. Kennefick, Shane L. Larson

All Physics Faculty Publications

The capture of compact bodies by black holes in galactic nuclei is an important prospective source for low frequency gravitational wave detectors, such as the planned Laser Interferometer Space Antenna. This paper calculates, using a semirelativistic approximation, the total energy and angular momentum lost to gravitational radiation by compact bodies on very high eccentricity orbits passing close to a supermassive, nonspinning black hole; these quantities determine the characteristics of the orbital evolution necessary to estimate the capture rate. The semirelativistic approximation improves upon treatments which use orbits at Newtonian order and quadrupolar radiation emission, and matches well onto accurate Teukolsky …


Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson Jan 2004

Lisa Time-Delay Interferometry Zero-Signal Solution: Geometrical Properties, Massimo Tinto, Shane L. Larson

All Physics Faculty Publications

Time-delay interferometry (TDI) is the data processing technique needed for generating interferometric combinations of data measured by the multiple Doppler readouts available onboard the three Laser Interferometer Space Antenna (LISA) spacecraft. Within the space of all possible interferometric combinations TDI can generate, we have derived a specific combination that has zero response to the gravitational wave signal, and called it the zero-signal solution (ZSS). This is a two-parameter family of linear combinations of the generators of the TDI space, and its response to a gravitational wave becomes null when these two parameters coincide with the values of the angles of …


Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson Jan 2003

Lisa Data Analysis: Source Identification And Subtraction, Neil J. Cornish, Shane L. Larson

All Physics Faculty Publications

The Laser Interferometer Space Antenna will operate as an AM-FM receiver for gravitational waves. For binary systems, the source location, orientation and orbital phase are encoded in the amplitude and frequency modulation. The same modulations spread a monochromatic signal over a range of frequencies, making it difficult to identify individual sources. We present a method for detecting and subtracting individual binary signals from a data stream with many overlapping signals.


Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson Jan 2003

Lisa, Binary Stars, And The Mass Of The Graviton, Curt Cutler, William A. Hiscock, Shane L. Larson

All Physics Faculty Publications

We extend and improve earlier estimates of the ability of the proposed LISA (Laser Interferometer Space Antenna) gravitational wave detector to place upper bounds on the graviton mass mg by comparing the arrival times of gravitational and electromagnetic signals from binary star systems. We show that the best possible limit on mg obtainable this way is ∼50 times better than the current limit set by solar system measurements. Among currently known, well-understood binaries, 4U1820-30 is the best for this purpose; LISA observations of 4U1820-30 should yield a limit ≈3-4 times better than the present solar system bound. AM …


The Lisa Optimal Sensitivity, Thomas A. Prince, Massimo Tinto, Shane L. Larson, J. W. Armstrong Jan 2002

The Lisa Optimal Sensitivity, Thomas A. Prince, Massimo Tinto, Shane L. Larson, J. W. Armstrong

All Physics Faculty Publications

The multiple Doppler readouts available on the Laser Interferometer Space Antenna (LISA) permit simultaneous formation of several interferometric observables. All these observables are independent of laser frequency fluctuations and have different couplings to gravitational waves and to the various LISA instrumental noises. Within the functional space of interferometric combinations LISA will be able to synthesize, we have identified a triplet of interferometric combinations that show optimally combined sensitivity. As an application of the method, we computed the sensitivity improvement for sinusoidal sources in the nominal, equal-arm LISA configuration. In the part of the Fourier band where the period of the …


Unequal Arm Space-Borne Gravitational Wave Detectors, Shane L. Larson, Ronald W. Hellings, William A. Hiscock Jan 2002

Unequal Arm Space-Borne Gravitational Wave Detectors, Shane L. Larson, Ronald W. Hellings, William A. Hiscock

All Physics Faculty Publications

Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be rigid structures. When the end stations of the laser interferometer are freely flying spacecraft, the armlengths will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality of the arms that is required in a laboratory interferometer to cancel laser phase noise is not possible. However, using a method discovered by Tinto and Armstrong, a signal can be constructed in which laser phase noise exactly cancels out, even in an unequal arm interferometer. We examine the case where the ratio of the …


Sensitivity Curves For Spaceborne Gravitational Wave Interferometers, Shane L. Larson, William A. Hiscock, Ronald W. Hellings Jan 2000

Sensitivity Curves For Spaceborne Gravitational Wave Interferometers, Shane L. Larson, William A. Hiscock, Ronald W. Hellings

All Physics Faculty Publications

To determine whether particular sources of gravitational radiation will be detectable by a specific gravitational wave detector, it is necessary to know the sensitivity limits of the instrument. These instrumental sensitivities are often depicted (after averaging over source position and polarization) by graphing the minimal values of the gravitational wave amplitude detectable by the instrument versus the frequency of the gravitational wave. This paper describes in detail how to compute such a sensitivity curve given a set of specifications for a spaceborne laser interferometer gravitational wave observatory. Minor errors in the prior literature are corrected, and the first (mostly) analytic …


Using Binary Star Observations To Bound The Mass Of The Graviton, Shane L. Larson, William A. Hiscock Jan 2000

Using Binary Star Observations To Bound The Mass Of The Graviton, Shane L. Larson, William A. Hiscock

All Physics Faculty Publications

Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially …


Astrophysical Bounds On Global Strings, Shane L. Larson, William A. Hiscock Jan 1997

Astrophysical Bounds On Global Strings, Shane L. Larson, William A. Hiscock

All Physics Faculty Publications

Global topological defects produce nonzero stress energy throughout spacetime, and as a result can have observable gravitational influence on surrounding matter. Gravitational effects of global strings are used to place bounds on their cosmic abundance. The minimum separation between global strings is estimated by considering the defects' contribution to the cosmological energy density. More rigorous constraints on the abundance of global strings are constructed by examining the tidal forces such defects will have on observable astrophysical systems. The small number of observed tidally disrupted systems indicates there can be very few of these objects in the observable Universe.


Semiclassical Effects In Black Hole Interiors, William A. Hiscock, Shane L. Larson, Paul R. Anderson Jan 1997

Semiclassical Effects In Black Hole Interiors, William A. Hiscock, Shane L. Larson, Paul R. Anderson

All Physics Faculty Publications

First-order semiclassical perturbations to the Schwarzschild black hole geometry are studied within the black hole interior. The source of the perturbations is taken to be the vacuum stress-energy of quantized scalar, spinor, and vector fields, evaluated using analytic approximations developed by Page and others (for massless fields) and the DeWitt-Schwinger approximation (for massive fields). Viewing the interior as an anisotropic collapsing cosmology, we find that minimally or conformally coupled scalar fields, and spinor fields, decrease the anisotropy as the singularity is approached, while vector fields increase the anisotropy. In addition, we find that for massless fields of all spins, the …