Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Utah State University

Astrophysics and Astronomy

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Rayleigh-Lidar Observations Of Mesospheric Gravity Wave Activity Above Logan, Utah, Durga N. Kafle May 2009

Rayleigh-Lidar Observations Of Mesospheric Gravity Wave Activity Above Logan, Utah, Durga N. Kafle

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

A Rayleigh-scatter lidar operated from Utah State University (41.7°N, 111.8°W) for a period spanning 11 years ― 1993 through 2004. Of the 900 nights observed, data on 150 extended to 90 km or above. They were the ones used in these studies related to atmospheric gravity waves (AGWs) between 45 and 90 km. This is the first study of AGWs with an extensive data set that spans the whole mesosphere. Using the temperature and temperature gradient profiles, we produced a climatology of the Brunt-Väisälä (buoyancy) angular frequency squared, N2 (rad/s)2. The minimum and maximum values of N …


The Adaptability Of Langmuir Probes To The Pico-Satellite Regime, Andrew Jay Auman Dec 2008

The Adaptability Of Langmuir Probes To The Pico-Satellite Regime, Andrew Jay Auman

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The purpose of this thesis is to investigate whether it is feasible to use Langmuir probes on pico-satellites flying in low Earth orbit over mid- to low-latitude geographic regions. Following chapters on the expected ionospheric conditions and an overview of Langmuir probe theory, a chapter addressing the difficulties involved with pico-satellite Langmuir probes is presented. Also, the necessary satellite-to-probe surface area requirements in order to achieve confidence in pico-satellite Langmuir probe data, for the orbital regions of interest to this thesis, are stated.