Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 69

Full-Text Articles in Physical Sciences and Mathematics

Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo Jan 2019

Structure And Electrochemical Performance Modulation Of A Lini0.8co0.1mn0.1o2 Cathode Material By Anion And Cation Co-Doping For Lithium Ion Batteries, Rong Li, Yong Ming, Wei Xiang, Chunliu Xu, Guilin Feng, Yongchun Li, Yanxiao Chen, Zhenguo Wu, Ben-He Zhong, Xiaodong Guo

Australian Institute for Innovative Materials - Papers

Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application. In this work, a minor content of Co and B were co-doped into the crystal of a Ni-rich cathode (LiNi0.8Co0.1Mn0.1O2) using cobalt acetate and boric acid as dopants. The results analyzed by XRD, TEM, XPS and SEM reveal that the modified sample shows a reduced energy barrier for Li+ insertion/extraction and alleviated Li+/Ni2+ cation mixing. With the doping of B and Co, corresponding enhanced cycle stability was achieved with a high capacity retention of 86.1% at 1.0C …


Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou Jan 2019

Flexible And Free-Standing Siox/Cnt Compositefilms For High Capacityand Durable Lithium Ion Batteries, Wenlei Guo, Xiao Yan, Feng Hou, Lei Wen, Yejing Dai, Deming Yang, Xiaotong Jiang, Jian Liu, Ji Liang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Flexible and free-standing electrode materials are prerequisite and key components for next-generation flexible energy storage and conversion devices. However, it is still a chanllenge to fabricate these materials from a continuous, straightforward, and facile method. Herein, we report a flexible composite film with silicon oxides decorated on few-walled carbon nanotubes, which can be continuously fabricated and directly drawn from the hot zone of the reactor. The composite film can be readily used for electrochemical lithium ion storage with high and reversible specific capacity, good rate capability, and excellent cycling performance. These exceptional characteristics make it very promising for flexible energy …


Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu Jan 2019

Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

CoSe2-SnSe2/NC nanocubes (CSNC@NC) coated by nitrogen-doped carbon (NC) were synthesized successfully by an ordinary pyrazole polymerization and carbonization process. In comparison with bare CSNC, the CSNC@NC composite exhibited good structural stability and improved electrical conductivity when used as anode. The CSNC@NC electrode showed a stable Li storage capacity (730.41 mAh g−1 over 100 cycles at 0.2 A g−1) and excellent rate performance (402.10 mAh g−1 at 2 A g−1). For Na storage, the discharge capacity could be maintained 279.3 mAh g−1 over 100 cycles at 0.2 A g−1; the lower capacity than that for Li storage maybe caused by the …


Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo Jan 2018

Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Ternary transition metal oxides (TTMOs) have attracted considerable attention for rechargeable batteries because of their fascinating properties. However, the unsatisfactory electrochemical performance originating from the poor intrinsic electronic conductivity and inferior structural stability impedes their practical applications. Here, the novel hierarchical porous NiO/β-NiMoO4heterostructure is fabricated, and exhibits high reversible capacity, superior rate capability, and excellent cycling stability in Li-ion batteries (LIBs), which is much better than the corresponding single-phase NiMoO4and NiO materials. The significantly enhanced electrochemical properties can be attributed to its superior structural characteristics, including the large surface area, abundant pores, fast charge transfer, and catalytic effect of the …


Direct Regeneration Of Cathode Materials From Spent Lithium Iron Phosphate Batteries Using A Solid Phase Sintering Method, X Song, T Hu, C Liang, H L. Long, L Zhou, W Song, L You, Z S. Wu, J W. Liu Jan 2017

Direct Regeneration Of Cathode Materials From Spent Lithium Iron Phosphate Batteries Using A Solid Phase Sintering Method, X Song, T Hu, C Liang, H L. Long, L Zhou, W Song, L You, Z S. Wu, J W. Liu

Australian Institute for Innovative Materials - Papers

A direct regeneration of cathode materials from spent LiFePO4 batteries using a solid phase sintering method has been proposed in this article. The spent battery is firstly dismantled to separate the cathode and anode plate, and then the cathode plate is soaked in DMAC organic solvent to separate the cathode materials and Al foil at optimal conditions of 30 min at 30 °C and solid liquid ratio of 1[thin space (1/6-em)]:[thin space (1/6-em)]20 g ml−1. XRD and SEM results of the spent LiFePO4 after separation show that there are some impurity phase components and irregular morphologies with many agglomerations. The …


Improved Cycling Stability Of Lithium-Sulphur Batteries By Enhancing The Retention Of Active Material With A Sandwiched Hydrothermally Treated Graphite Film, Yuede Pan, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2016

Improved Cycling Stability Of Lithium-Sulphur Batteries By Enhancing The Retention Of Active Material With A Sandwiched Hydrothermally Treated Graphite Film, Yuede Pan, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A new lithium-sulphur battery with a hydrothermally treated graphite film sandwiched between the separator and the sulphur cathode shows increased capacity, enhanced cycling stability and improved coulombic efficiency. After 50 cycles, a high capacity of 631 mA h g-1 is maintained, compared to 203 mA h g-1 for the Li-S battery with conventional configuration. Moreover, the coulombic efficiency is increased to near 100% from around 94%. This improved electrochemical performance could be attributed to the new cell configuration, because the graphite film greatly retains the active material by alleviating the polysulphide shuttling problem and providing extra reaction sites for sulphur …


Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou Jan 2016

Nitrogen-Doped Graphene Ribbon Assembled Core-Sheath Mno@Graphene Scrolls As Hierarchically Ordered 3d Porous Electrodes For Fast And Durable Lithium Storage, Yun Zhang, Penghui Chen, Xu Gao, Bo Wang, Heng Liu, Haobin Wu, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Graphene scroll is an emerging 1D tubular form of graphitic carbon that has potential applications in electrochemical energy storage. However, it still remains a challenge to composite graphene scrolls with other nanomaterials for building advanced electrode configuration with fast and durable lithium storage properties. Here, a transition-metal-oxide-based hierarchically ordered 3D porous electrode is designed based on assembling 1D core-sheath MnO@N-doped graphene scrolls with 2D N-doped graphene ribbons. In the resulting architecture, porous MnO nanowires confined in tubular graphene scrolls are mechanically isolated but electronically wellconnected, while the interwoven graphene ribbons offer continuous conductive paths for electron transfer in all directions. …


Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou Jan 2016

Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets For High-Performance Sodium And Lithium Storage, Dan Zhang, Wenping Sun, Zhihui Chen, Yu Zhang, Wenbin Luo, Yinzhu Jiang, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Two-dimensional (2D) nanomaterials are one of the most promising types of candidates for energy-storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt-/nickel-based hydroxides and oxides. The sodium and lithium storage capabilities of Co3O4 nanosheets are evaluated in detail. For sodium storage, the Co3O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g¿1 at 7.0 A g¿1 and 150 mA h g¿1 at 10.0 A g¿1) and promising cycling performance (404 mA …


Self-Assembled 3d Foam-Like Nico2o4 As Efficient Catalyst For Lithium Oxygen Batteries, Lili Liu, Jun Wang, Yuyang Hou, Jun Chen, Hua-Kun Liu, Jiazhao Wang, Yu-Ping Wu Jan 2016

Self-Assembled 3d Foam-Like Nico2o4 As Efficient Catalyst For Lithium Oxygen Batteries, Lili Liu, Jun Wang, Yuyang Hou, Jun Chen, Hua-Kun Liu, Jiazhao Wang, Yu-Ping Wu

Australian Institute for Innovative Materials - Papers

A self-assembled 3D foam-like NiCo2O4 catalyst has been synthesized via a simple and environmental friendly approach, wherein starch acts as the template to form the unique 3D architecture. Interestingly, when employed as a cathode for lithium oxygen batteries, it demonstrates superior bifunctional electrocatalytic activities toward both the oxygen reduction reaction and the oxygen evolution reaction, with a relatively high round-trip efficiency of 70% and high discharge capacity of 10 137 mAh g-1 at a current density of 200 mA g-1, which is much higher than those in previously reported results. Meanwhile, rotating disk electrode measurements in both aqueous and nonaqueous …


Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou Jan 2016

Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou

Australian Institute for Innovative Materials - Papers

MoS2 with expanded layers was synthesized and characterized as an anode material for lithium ion batteries in an ether-based electrolyte by cutting off the terminal discharge voltage at 1.0 V to prevent a MoS2 conversion reaction. The as-prepared MoS2 achieved 96% capacity retention even after 1400 cycles and showed good performance in a full cell with LiCoO2 as the counter electrode.


A Facile Approach To Synthesize Stable Cnts@Mno Electrocatalyst For High Energy Lithium Oxygen Batteries, Wenbin Luo, Shulei Chou, Jiazhao Wang, Yu-Chun Zhai, Hua-Kun Liu Jan 2015

A Facile Approach To Synthesize Stable Cnts@Mno Electrocatalyst For High Energy Lithium Oxygen Batteries, Wenbin Luo, Shulei Chou, Jiazhao Wang, Yu-Chun Zhai, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

A composite of manganese monoxide loaded onto carbon nanotubes (CNTs@MnO) has been synthesized by a facile approach, in which the CNTs form a continuous conductive network connecting the electrocatalyst MnO nanoparticles together to facilitate good electrochemical performance. The electrocatalyst MnO shows favourable rechargeability, and good phase and morphology stability in lithium oxygen batteries. Excellent cycling performance is also demonstrated, in which the terminal voltage is higher than 2.4 V after 100 cycles at 0.4 mA cm-2, with 1000 mAh g-1 (composite) capacity. Therefore, this hybrid material is promising for use as a cathode material for lithium oxygen …


Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei Jan 2015

Dual Yolk-Shell Structure Of Carbon And Silica-Coated Silicon For High-Performance Lithium-Ion Batteries, L Y. Yang, H Z. Li, Jun Liu, Ziqi Sun, S S. Tang, M Lei

Australian Institute for Innovative Materials - Papers

Silicon batteries have attracted much attention in recent years due to their high theoretical capacity, although a rapid capacity fade is normally observed, attributed mainly to volume expansion during lithiation. Here, we report for the first time successful synthesis of Si/void/SiO2/void/C nanostructures. The synthesis strategy only involves selective etching of SiO2 in Si/SiO2/C structures with hydrofluoric acid solution. Compared with reported results, such novel structures include a hard SiO2-coated layer, a conductive carbon-coated layer, and two internal void spaces. In the structures, the carbon can enhance conductivity, the SiO2 layer has mechanically …


Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen Jan 2015

Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen

Australian Institute for Innovative Materials - Papers

CuO powders composed of different rod-like clusters or dandelion-like nanospheres are prepared by a low-temperature thermal decomposition process of Cu(OH)2 precursors, which are obtained via a catalytic template method. A tentative mechanism is proposed to explain the formation and transformation of different Cu(OH)2 nanostructures. X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, field-emission scanning electron microscopy, transmission electron microscopy, infrared spectra analysis, Brunauer-Emmett-Teller measurements, and galvanostatic cell cycling are employed to characterize the structures and electrochemical performance of these CuO samples. The results show that these CuO samples obtained after 500 °C calcination have a stable cycling performance with a reversible …


3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun Jan 2015

3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun

Australian Institute for Innovative Materials - Papers

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible …


Crystalline Tio2@C Nanosheet Anode With Enhanced Rate Capability For Lithium-Ion Batteries, Fan Yang, Yuxuan Zhu, Xiu Li, Chao Lai, Wei Guo, Jianmin Ma Jan 2015

Crystalline Tio2@C Nanosheet Anode With Enhanced Rate Capability For Lithium-Ion Batteries, Fan Yang, Yuxuan Zhu, Xiu Li, Chao Lai, Wei Guo, Jianmin Ma

Australian Institute for Innovative Materials - Papers

TiO2@C nanosheets have been obtained by a facile solvothermal method using titanate butoxide and hydrofluoric acid as precursors, followed by our novel carbon coating technique using oleic acid as the carbon source. The TiO2@C nanosheet anode shows a high discharge capacity of 145.8 mA h g-1 after 50 cycles and excellent rate capability.


Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu Jan 2015

Porous Agpd-Pd Composite Nanotubes As Highly Efficient Electrocatalysts For Lithium-Oxygen Batteries, Wenbin Luo, Xuanwen Gao, Shulei Chou, Jiazhao Wang, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Porous AgPd-Pd composite nanotubes (NTs) are used as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium-oxygen batteries. The porous NT structure can facilitate rapid O2 and electrolyte diffusion through the NTs and provide abundant catalytic sites, forming a continuous conductive network throughout the entire energy conversion process, with excellent cycling performance.


Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou Jan 2015

Yolk-Shell Silicon-Mesoporous Carbon Anode With Compact Solid Electrolyte Interphase Film For Superior Lithium-Ion Batteries, Jianping Yang, Yunxiao Wang, Shulei Chou, Renyuan Zhang, Yanfei Xu, Jianwei Fan, Weixian Zhang, Hua-Kun Liu, Dongyuan Zhao, S X. Dou

Australian Institute for Innovative Materials - Papers

Silicon as an electrode suffers from short cycling life, as well as unsatisfactory rate-capability caused by the large volume expansion (~400%) and the consequent structural degradation during lithiation/delithiation processes. Here, we have engineered unique void-containing mesoporous carbon-encapsulated commercial silicon nanoparticles (NPs) in yolk-shell structures. In this design, the silicon NPs yolk are wrapped into open and accessible mesoporous carbon shells, the void space between yolk and shell provides enough room for Si expansion, meanwhile, the porosity of carbon shell enables fast transport of Li+ ions between electrolyte and silicon. Our ex-situ characterization clearly reveals for the first time that a …


A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo Jan 2015

A New Strategy For Achieving A High Performance Anode For Lithium Ion Batteries-Encapsulating Germanium Nanoparticles In Carbon Nanoboxes, Dan Li, Hongqiang Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel strategy to improve the electrochemical performance of a germanium anode is proposed via encapsulating germanium nanoparticles in carbon nanoboxes by carbon coating the precursor, germanium dioxide cubes, and then subjecting them to a reduction treatment. The complete and robust carbon boxes are shown to not only provide extra void space for the expansion of germanium nanoparticles after lithium insertion but also offer a large reactive area and reduced distance for the lithium diffusion. Furthermore, the thus-obtained composite, composed of densely stacked carbon nanoboxes encapsulating germanium nanoparticles (germanium at carbon cubes (Ge at CC)), exhibits a high tap density …


Spatially-Confined Lithiation-Delithiation In Highly Dense Nanocomposite Anodes Towards Advanced Lithium-Ion Batteries, Yinzhu Jiang, Yong Li, Wenping Sun, Wei Huang, Jiabin Liu, Ben Xu, Chuanhong Jin, Tianyu Ma, Changzheng Wu, Mi Yan Jan 2015

Spatially-Confined Lithiation-Delithiation In Highly Dense Nanocomposite Anodes Towards Advanced Lithium-Ion Batteries, Yinzhu Jiang, Yong Li, Wenping Sun, Wei Huang, Jiabin Liu, Ben Xu, Chuanhong Jin, Tianyu Ma, Changzheng Wu, Mi Yan

Australian Institute for Innovative Materials - Papers

Spatially-confined electrochemical reactions are firstly realized in a highly dense nanocomposite anode for high performance lithium ion batteries. The spatially-confined lithiation-delithiation effectively avoids inter-cluster migration and perfectly retains full structural integrity. Large reversible capacity, high rate capability and superior cycling stability are achieved simultaneously. This spatially-confined lithiation-delithiation offers novel insight to enhance cycling performance of high capacity anode materials.


Gold Nanocrystals With Variable Index Facets As Highly Effective Cathode Catalysts For Lithium-Oxygen Batteries, Dawei Su, S X. Dou, Guoxiu Wang Jan 2015

Gold Nanocrystals With Variable Index Facets As Highly Effective Cathode Catalysts For Lithium-Oxygen Batteries, Dawei Su, S X. Dou, Guoxiu Wang

Australian Institute for Innovative Materials - Papers

Cathode catalysts are the key factor in improving the electrochemical performance of lithium-oxygen (Li-O2) batteries via their promotion of the oxygen reduction and oxygen evolution reactions (ORR and OER). Generally, the catalytic performance of nanocrystals (NCs) toward ORR and OER depends on both composition and shape. Herein, we report the synthesis of polyhedral Au NCs enclosed by a variety of index facets: cubic gold (Au) NCs enclosed by {100} facets; truncated octahedral Au NCs enclosed by {100} and {110} facets; and trisoctahedral (TOH) Au NCs enclosed by 24 high-index {441} facets, as effective cathode catalysts for Li-O2 batteries. All Au …


Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2015

Hollow Carbon Spheres With Encapsulated Germanium As An Anode Material For Lithium Ion Batteries, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel composite consisting of hollow carbon spheres with encapsulated germanium (Ge@HCS) was synthesized by introducing a germanium precursor into the porous-structured hollow carbon spheres. The carbon spheres not only function as a scaffold to hold the germanium and thus maintain the structural integrity of the composite, but also increase the electrical conductivity. The voids and vacancies that are formed after the reduction of germanium dioxide to germanium provide free space for accommodating the volume changes during discharging-charging processes, thus preventing pulverization. The obtained Ge@HCS composite exhibits excellent lithium storage performance, as revealed by electrochemical evaluation.


Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2015

Split-Half-Tubular Polypyrrole@Sulfur@Polypyrrole Composite With A Novel Three-Layer-3d Structure As Cathode For Lithium/Sulfur Batteries, Xin Liang, Mingang Zhang, Mohammad Kaiser, Xuanwen Gao, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Polypyrrole@Sulfur@Polypyrrole composite with a novel three-layer-3D-structure, which consists of an external polypyrrole coating layer, an intermediate sulfur filling layer, and an internal polypyrrole split-half-tube conducting matrix layer, has been synthesized by the oxidative chemical polymerization method and chemical precipitation method in this article. Due to this unique three-layer-structure, the discharge specific capacity of Polypyrrole@Sulfur@Polypyrrole composite cathode retained at 554mAh g-1 after 50 cycles, which represents 68.8% retention of the initial discharge specific capacity. In comparison, the Sulfur@Polypyrrole composite cathode, with the same components as Polypyrrole@Sulfur@Polypyrrole composite, but without the three-layer-structure, has the discharge specific capacity of 370mAh g-1 after 50 …


Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han Jan 2015

Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han

Australian Institute for Innovative Materials - Papers

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2/nitrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g-1 after 200 cycles at a current density of 400 mA g-1 …


Unique Urchin-Like Ca2ge7o16 Hierarchical Hollow Microspheres As Anode Material For The Lithium Ion Battery, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2015

Unique Urchin-Like Ca2ge7o16 Hierarchical Hollow Microspheres As Anode Material For The Lithium Ion Battery, Dan Li, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, but normally sacrifice its electrochemical performance. By the combination of nanostructure design and cheap element (calcium) introduction, urchin-like Ca2Ge7O16 hierarchical hollow microspheres have been successfully developed in order to reduce the price and maintain the …


Sodium And Lithium Storage Properties Of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres, Sujith Kalluri, Kuok Hau Seng, Zaiping Guo, Aijun Du, Konstantin K. Konstantinov, Hua-Kun Liu, S X. Dou Jan 2015

Sodium And Lithium Storage Properties Of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres, Sujith Kalluri, Kuok Hau Seng, Zaiping Guo, Aijun Du, Konstantin K. Konstantinov, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high …


Towards Understanding The Lithium Transport Mechanism In Garnet-Type Solid Electrolytes: Li+ Ions Exchanges And Their Mobility At Octahedral/Tetrahedral Sites, Da-Wei Wang, Guiming Zhong, Wei Kong Pang, Zaiping Guo, Yixiao Li, Matthew J. Mcdonald, Riqiang Fu, Jin-Xiao Mi, Yong Yang Jan 2015

Towards Understanding The Lithium Transport Mechanism In Garnet-Type Solid Electrolytes: Li+ Ions Exchanges And Their Mobility At Octahedral/Tetrahedral Sites, Da-Wei Wang, Guiming Zhong, Wei Kong Pang, Zaiping Guo, Yixiao Li, Matthew J. Mcdonald, Riqiang Fu, Jin-Xiao Mi, Yong Yang

Australian Institute for Innovative Materials - Papers

The cubic garnet-type solid electrolyte Li7La3Zr2O12 with aliovalent doping exhibits a high ionic conductivity, reaching up to ∼10−3 S/cm at room temperature. Fully understanding the Li+ transport mechanism including Li+ mobility at different sites is a key topic in this field, and Li7−2x−3yAlyLa3Zr2−xWxO12 (0 ≤ x ≤ 1) are selected as target electrolytes. X-ray and neutron diffraction as well as ac impedance results show that a low amount of aliovalent substitution of Zr with W does not obviously affect the crystal structure and the activation energy of Li+ ion jumping, but it does noticeably vary the distribution of Li+ ions, …


Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma Jan 2015

Growth Of Mos2@C Nanobowls As A Lithium-Ion Battery Anode Material, Chunyu Cui, Xiu Li, Zhe Hu, Jiantie Xu, Hua-Kun Liu, Jianmin Ma

Australian Institute for Innovative Materials - Papers

Layered MoS2 has attracted much attention as a promising anode material for lithium ion batteries. The intrinsically poor electrical/ionic conductivity, volume expansion and pulverization, stress accumulation and unstable solid-electrolyte interface formation within MoS2 electrodes during the lithiation-delithiation process significantly result in their fast capacity fading, poor rate capability and cycle life. To address these critical issues, a novel nanobowl structure for MoS2 with a carbon coating (MoS2@C-400, 500, 600) is successfully fabricated by a facile solvothermal method, followed by a post-annealing process. The fabricated MoS2@C-600 and MoS2@C-500 exhibited high reversible capacities of 1164.4 and 1076.4 mA h g-1 at 0.2C, …


Vanadium-Based Nanostructure Materials For Secondary Lithium Battery Applications, Hui Teng Tan, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim Jan 2015

Vanadium-Based Nanostructure Materials For Secondary Lithium Battery Applications, Hui Teng Tan, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim

Australian Institute for Innovative Materials - Papers

Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to "create" newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical …


Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2015

Large-Scale Synthesis Of Ordered Mesoporous Carbon Fiber And Its Application As Cathode Material For Lithium-Sulfur Batteries, Hongqiang Wang, Chaofeng Zhang, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A novel type of one-dimensional ordered mesoporous carbon fiber has been prepared via the electrospinning technique by using resol as the carbon source and triblock copolymer Pluronic F127 as the template. Sulfur is then encapsulated in this ordered mesoporous carbon fibers by a simple thermal treatment. The interwoven fibrous nanostructure has favorably mechanical stability and can provide an effective conductive network for sulfur and polysulfides during cycling. The ordered mesopores can also restrain the diffusion of long-chain polysulfides. The resulting ordered mesoporous carbon fiber sulfur (OMCF-S) composite with 63% S exhibits high reversible capacity, good capacity retention and enhanced rate …


Tio2 Coated Three-Dimensional Hierarchically Ordered Porous Sulfur Electrode For The Lithium/Sulfur Rechargeable Batteries, Hongqiang Wang, Sha Li, Dan Li, Zhixin Chen, Hua-Kun Liu, Zaiping Guo Jan 2014

Tio2 Coated Three-Dimensional Hierarchically Ordered Porous Sulfur Electrode For The Lithium/Sulfur Rechargeable Batteries, Hongqiang Wang, Sha Li, Dan Li, Zhixin Chen, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

A three-dimensional (3D) hierarchically ordered mesoporous carbon-sulfur composite slice coated with a thin TiO2 layer has been synthesized by a low-cost process and investigated as a cathode for the lithium-sulfur batteries. The TiO2 coated carbon sulfur composite thin slice works as a binder-free cathode without any current collectors for lithium-sulfur batteries. The hierarchical architecture provides a 3D conductive network for electron transfer, open channels for ion diffusion and strong confinement of soluble polysulfides. Meanwhile, TiO2 (titanium dioxide) coating layer could further effectively prevent the dissolution of polysulfides and also improve the strength of the entire electrode, thereby enhancing the electrochemical …