Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wollongong

Australian Institute for Innovative Materials - Papers

Series

2014

Solar

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Highly Connected Hierarchical Textured Tio2 Spheres As Photoanodes For Dye-Sensitized Solar Cells, Jianjian Lin, Andrew Nattestad, Hua Yu, Yang Bai, Lianzhou Wang, S X. Dou, Jung Ho Kim Jan 2014

Highly Connected Hierarchical Textured Tio2 Spheres As Photoanodes For Dye-Sensitized Solar Cells, Jianjian Lin, Andrew Nattestad, Hua Yu, Yang Bai, Lianzhou Wang, S X. Dou, Jung Ho Kim

Australian Institute for Innovative Materials - Papers

We present a new type of microstructured TiO2 sea urchin-like assembly, composed of high aspect-ratio nanosheets. We also demonstrate the applicability of these structures as photoanodes in dye-sensitized solar cells, with 9.0% conversion efficiency realized, a considerable improvement over the commercial Dyesol paste (8.2%) under the same conditions. We reveal that this new TiO2 nanostructure is beneficial to enhanced dye loading and efficient light scattering. In particular, the interpenetrating individual sheets of the spheres result in more intimate interparticle connections and provide efficient electron transfer pathways.


Enhanced Performance Of Dye-Sensitized Solar Cells Using Carbazole-Substituted Di-Chromophoric Porphyrin Dyes, Long Zhao, Pawel Wagner, Anastasia Elliott, Matthew Griffith, Tracey M. Clarke, Keith C. Gordon, Shogo Mori, Attila Mozer Jan 2014

Enhanced Performance Of Dye-Sensitized Solar Cells Using Carbazole-Substituted Di-Chromophoric Porphyrin Dyes, Long Zhao, Pawel Wagner, Anastasia Elliott, Matthew Griffith, Tracey M. Clarke, Keith C. Gordon, Shogo Mori, Attila Mozer

Australian Institute for Innovative Materials - Papers

The purpose of this work is to investigate the origin of improved photovoltaic performance of a series of di-chromophoric carbazole-substituted porphyrin dyes employed as sensitizers in dye-sensitized solar cells. Five di-chromophoric zinc porphyrin dyes with the same porphyrin core, a carbazole unit attached in the meso-position through a phenylethenyl linkage, and substituents spanning a range of electron affinities, in an attempt to tune the electronic level of the carbazole unit, have been synthesized (CZPs). Density functional theory (DFT) calculations predicted the nature of the electronic transitions observed in the CZP systems, showing a large degree of orbital mixing. In contrast, …


Integrating A Triplet-Triplet Annihilation Up-Conversion System To Enhance Dye-Sensitized Solar Cell Response To Sub-Bandgap Light, Andrew Nattestad, Yuen Yap Cheng, R Macqueen, Gordon G. Wallace, Timothy Schmidt Jan 2014

Integrating A Triplet-Triplet Annihilation Up-Conversion System To Enhance Dye-Sensitized Solar Cell Response To Sub-Bandgap Light, Andrew Nattestad, Yuen Yap Cheng, R Macqueen, Gordon G. Wallace, Timothy Schmidt

Australian Institute for Innovative Materials - Papers

The poor response of dye-sensitized solar cells (DSCs) to red and infrared light is a significant impediment to the realization of higher photocurrents and hence higher efficiencies. Photon up-conversion by way of triplet-triplet annihilation (TTA-UC) is an attractive technique for using these otherwise wasted low energy photons to produce photocurrent, while not interfering with the photoanodic performance in a deleterious manner. Further to this, TTA-UC has a number of features, distinct from other reported photon up-conversion technologies, which renders it particularly suitable for coupling with DSC technology. In this work, a proven high performance TTA-UC system, comprising a palladium porphyrin …


3d Hierarchical Rutile Tio2 And Metal-Free Organic Sensitizer Producing Dye-Sensitized Solar Cells 8.6% Conversion Efficiency, Jianjian Lin, Yoon-Uk Heo, Andrew Nattestad, Ziqi Sun, Lianzhou Wang, Jung Ho Kim, S X. Dou Jan 2014

3d Hierarchical Rutile Tio2 And Metal-Free Organic Sensitizer Producing Dye-Sensitized Solar Cells 8.6% Conversion Efficiency, Jianjian Lin, Yoon-Uk Heo, Andrew Nattestad, Ziqi Sun, Lianzhou Wang, Jung Ho Kim, S X. Dou

Australian Institute for Innovative Materials - Papers

Three-dimensional (3D) hierarchical nanoscale architectures comprised of building blocks, with specifically engineered morphologies, are expected to play important roles in the fabrication of 'next generation' microelectronic and optoelectronic devices due to their high surface-to-volume ratio as well as opto-electronic properties. Herein, a series of well-defined 3D hierarchical rutile TiO2 architectures (HRT) were successfully prepared using a facile hydrothermal method without any surfactant or template, simply by changing the concentration of hydrochloric acid used in the synthesis. The production of these materials provides, to the best of our knowledge, the first identified example of a ledgewise growth mechanism in a rutile …