Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wollongong

Australian Institute for Innovative Materials - Papers

Series

2014

Light

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Enhanced Visible-Light Photocatalytic Activity Of G-C3n4/Tio2 Films, Natkritta Boonprakob, Natda Wetchakun, Sukon Phanichphant, David Wexler, Peter Sherrell, Andrew Nattestad, Jun Chen, Burapat Inceesungvorn Jan 2014

Enhanced Visible-Light Photocatalytic Activity Of G-C3n4/Tio2 Films, Natkritta Boonprakob, Natda Wetchakun, Sukon Phanichphant, David Wexler, Peter Sherrell, Andrew Nattestad, Jun Chen, Burapat Inceesungvorn

Australian Institute for Innovative Materials - Papers

Enhanced photocatalytic degradation of methylene blue (MB) using graphitic carbon nitride/titanium dioxide (g-C3N4/TiO2) catalyst films has been demonstrated in this present work. The g-C3N4/TiO2 composites were prepared by directly heating the mixture of melamine and pre-synthesized TiO2 nanoparticles in Ar gas flow. The g-C3N4 contents in the g-C3N4/TiO2 composites were varied as 0, 20, 50 and 70 wt%. It was found that the visible-light-induced photocatalytic degradation of MB was remarkably increased upon coupling TiO2 with g-C3N4 and the best degradation performance of ∼70% was obtained from 50 wt% g-C3N4 loading content. Results from UV–vis absorption study, Electron microscopy, Fourier transform …


Photoelectrochemical Reduction Of Aqueous Protons With A Cuo|Cubi2o4 Heterojunction Under Visible Light Irradiation, Hyun S. Park, Chong-Yong Lee, Erwin Reisner Jan 2014

Photoelectrochemical Reduction Of Aqueous Protons With A Cuo|Cubi2o4 Heterojunction Under Visible Light Irradiation, Hyun S. Park, Chong-Yong Lee, Erwin Reisner

Australian Institute for Innovative Materials - Papers

A p-type heterojunction photoelectrode consisting of platinized CuBi2O4 layered on a CuO film was prepared. The CuO|CuBi2O4|Pt electrode photo-generates H2 in pH neutral aqueous solution during visible light irradiation and exhibits a substantially enhanced photocurrent compared to CuO|Pt and CuBi2O4|Pt electrodes. Reduced electron-hole recombination by the band offsets in the heterostructure is responsible for the improved photoelectrochemical performance of CuO|CuBi2O4 with a small band-gap of approximately 1.5 eV.


The Synergistic Effect Between Wo3 And G-C3n4 Towards Efficient Visible-Light-Driven Photocatalytic Performance, Imran Aslam, Chuanbao Cao, M Tanveer, Waheed S. Khan, Muhammad Nawaz Tahir, Muhammad Abid, Faryal Idrees, Faheem K. Butt, Zulfiqar Ali, Nasir Mahmood Jan 2014

The Synergistic Effect Between Wo3 And G-C3n4 Towards Efficient Visible-Light-Driven Photocatalytic Performance, Imran Aslam, Chuanbao Cao, M Tanveer, Waheed S. Khan, Muhammad Nawaz Tahir, Muhammad Abid, Faryal Idrees, Faheem K. Butt, Zulfiqar Ali, Nasir Mahmood

Australian Institute for Innovative Materials - Papers

We have developed a facile, scaled up, efficient and morphology-based novel WO3-g-C3N4 photocatalyst with different mass ratios of WO3 and g-C3N4. It was used for the photodegradation of rhodamine B (RhB) under visible light irradiation and it showed excellent enhanced photocatalytic efficiency as compared to pure g-C3N4 and WO3. The apparent performance of the composite/hybrid was 3.65 times greater than pure WO3 and 3.72 times greater than pure g-C3N4 respectively, and it was also found to be much higher than the previously reported ones. Furthermore, the optical properties of composite samples were evaluated. The bandgap of composite samples lies in …


Template Free Synthesis Of Cus Nanosheet-Based Hierarchical Microspheres: An Efficient Natural Light Driven Photocatalyst, M Tanveer, Chuanbao Cao, Zulfiqar Ali, Imran Aslam, Faryal Idrees, Waheed S. Khan, Faheem K. Butt, Muhammad Nawaz Tahir, Nasir Mahmood Jan 2014

Template Free Synthesis Of Cus Nanosheet-Based Hierarchical Microspheres: An Efficient Natural Light Driven Photocatalyst, M Tanveer, Chuanbao Cao, Zulfiqar Ali, Imran Aslam, Faryal Idrees, Waheed S. Khan, Faheem K. Butt, Muhammad Nawaz Tahir, Nasir Mahmood

Australian Institute for Innovative Materials - Papers

Well controlled nanosheets-based hierarchical microspheres (NSHMS) of pure covellite phase CuS were synthesized using a facile PVP assisted solvothermal process. The reaction conditions were optimized using various amounts of PVP to develop unique hierarchical structured hollow microspheres. CuS hollow structures have a bandgap of ~1.97 eV. These mesoporous structures exhibit excellent photocatalytic activity in degradation of organic dyes (Methylene Blue) under natural light in comparison to other structures of copper sulphide. These photocatalysts show extraordinary reusability with over 96.5% degradation of organic dye after 6th cycle. A "bottom-up" assembly was successfully developed to synthesize hollow microspheres with unique and well …


Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant Jan 2014

Photocatalytic Degradation Of Methyl Orange By Ceo2 And Fe-Doped Ceo2 Films Under Visible Light Irradiation, D Channei, B Inceesungvorn, N Wetchakun, S Ukritnukun, Andrew Nattestad, Jun Chen, S Phanichphant

Australian Institute for Innovative Materials - Papers

Undoped CeO2 and 0.50-5.00 mol% Fe-doped CeO2 nanoparticles were prepared by a homogeneous precipitation combined with homogeneous/impreganation method, and applied as photocatalyst films prepared by a doctor blade technique. The superior photocatalytic performances of the Fe-doped CeO2 films, compared with undoped CeO2 films, was ascribed mainly to a decrease in band gap energy and an increase in specific surface area of the material. The presence of Fe3+ as found from XPS analysis, may act as electron acceptor and/or hole donor, facilitating longer lived charge carrier separation in Fe-doped CeO2 films as confirmed by photoluminescence spectroscopy. The 1.50 mol% Fe-doped CeO2 …


A Dye-Sensitized Visible Light Photocatalyst-Bi24o31cl10, Liang Wang, Jun Shang, Weichang Hao, Shiqi Jiang, Shiheng Huang, Tianmin Wang, Ziqi Sun, Yi Du, S X. Dou, Tengfeng Xie, Dejun Wang, Jiaou Wang Jan 2014

A Dye-Sensitized Visible Light Photocatalyst-Bi24o31cl10, Liang Wang, Jun Shang, Weichang Hao, Shiqi Jiang, Shiheng Huang, Tianmin Wang, Ziqi Sun, Yi Du, S X. Dou, Tengfeng Xie, Dejun Wang, Jiaou Wang

Australian Institute for Innovative Materials - Papers

The p-block semiconductors are regarded as a new family of visible-light photocatalysts because of their dispersive and anisotropic band structures as well as high chemical stability. The bismuth oxide halides belong to this family and have band structures and dispersion relations that can be engineered by modulating the stoichiometry of the halogen elements. Herein, we have developed a new visible-light photocatalyst Bi24O31Cl10 by band engineering, which shows high dye-sensitized photocatalytic activity. Density functional theory calculations reveal that the p-block elements determine the nature of the dispersive electronic structures and narrow band gap in Bi24O31Cl10. Bi24O31Cl10 exhibits excellent visible-light photocatalytic activity …


Integrating A Triplet-Triplet Annihilation Up-Conversion System To Enhance Dye-Sensitized Solar Cell Response To Sub-Bandgap Light, Andrew Nattestad, Yuen Yap Cheng, R Macqueen, Gordon G. Wallace, Timothy Schmidt Jan 2014

Integrating A Triplet-Triplet Annihilation Up-Conversion System To Enhance Dye-Sensitized Solar Cell Response To Sub-Bandgap Light, Andrew Nattestad, Yuen Yap Cheng, R Macqueen, Gordon G. Wallace, Timothy Schmidt

Australian Institute for Innovative Materials - Papers

The poor response of dye-sensitized solar cells (DSCs) to red and infrared light is a significant impediment to the realization of higher photocurrents and hence higher efficiencies. Photon up-conversion by way of triplet-triplet annihilation (TTA-UC) is an attractive technique for using these otherwise wasted low energy photons to produce photocurrent, while not interfering with the photoanodic performance in a deleterious manner. Further to this, TTA-UC has a number of features, distinct from other reported photon up-conversion technologies, which renders it particularly suitable for coupling with DSC technology. In this work, a proven high performance TTA-UC system, comprising a palladium porphyrin …