Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wollongong

Australian Institute for Innovative Materials - Papers

Series

2006

Based

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Formation Of Magnesium Diboride-Based Materials With High Critical Currents And Mechanical Characteristics By High-Pressure Synthesis, Tetiana Prikhna, W. Gawalek, Ya M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, V. B. Sverdun, S X. Dou, S. N. Dub, V. S. Melnikov, Ch Schmidt, J. Dellith, P. A. Nagorny Jan 2006

Formation Of Magnesium Diboride-Based Materials With High Critical Currents And Mechanical Characteristics By High-Pressure Synthesis, Tetiana Prikhna, W. Gawalek, Ya M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, V. B. Sverdun, S X. Dou, S. N. Dub, V. S. Melnikov, Ch Schmidt, J. Dellith, P. A. Nagorny

Australian Institute for Innovative Materials - Papers

The developed method of high-pressure synthesis (HPS) allows producing nanostructural highly dense material based on MGB2, which possesses the highest superconducting and mechanical characteristics among the known world analogues, in the form of blocks that are suitable for application in SC electromotors and pumps. Additions of Zr can increase critical current density (jc) of synthesized at 2 GPa and 750-800 °C MGB2 in the same manner as additions of Ta or Ti, i.e. due to the absorption of impurity hydrogen forming the ZrH2. The formation of ZrB2 phase at higher synthesis …