Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wisconsin Milwaukee

Theses/Dissertations

Gravitational Waves

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang Dec 2022

Chasing Transients: Constructing Local Galaxy Catalogs For Electromagnetic Follow-Up Of Gravitational Wave Events, Chaoran Zhang

Theses and Dissertations

Gravitational waves (GWs) provide a new window for observing the universe which is not possible using traditional electromagnetic (EM) wave astronomy. The coalescence of compact object binaries, such as black holes (BHs) and neutron stars (NSs) generates “loud" GW signals that are detectable by the LIGO-Virgo-KAGRA (LVK) GW Observa- tory. If the binary contains at least one NS, there is a possibility that an observable EM counterpart will be launched during and/or after the merger. The first joint detection of GW radiation (GW170817) and its EM counterpart (AT 2017gfo) greatly extended our understanding of the universe in many fields, such …


Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath Aug 2021

Gravitational Wave Timing Residual Models For Pulsar Timing Experiments, Casey Mcgrath

Theses and Dissertations

The ability to detect gravitational waves now gives scientists and astronomers a new way in which they can study the universe. So far, the scientific collaboration LIGO has been successful in detecting binary black hole and binary neutron star mergers. These types of sources produce gravitational waves with frequencies of the order hertz to millihertz. But there do exist other theoretical sources which would produce gravitational waves in different parts of the frequency spectrum. Of these are the theoretical mergers of supermassive black hole binaries (SMBHBs), which could occur upon the merging of two galaxies with supermassive black holes at …


Measuring Deterministic And Stochastic Gravitational Waves With Pulsar Timing Array Experiments, Kristina Islo May 2019

Measuring Deterministic And Stochastic Gravitational Waves With Pulsar Timing Array Experiments, Kristina Islo

Theses and Dissertations

Pulsar timing arrays (PTAs) are uniquely poised to detect the nanohertz-frequency gravitational waves from supermassive black hole binaries (SMBHBs) formed during galaxy merger. Efforts are underway to observe three species of gravitational signal from these systems: the stochastic ensemble, individual, adiabatic binary inspirals, and bursts with memory. This dissertation discusses all three.

A typical Bayesian search for evidence of a stochastic gravitational wave background from the superposition of many unresolvable SMBHB inspirals requires weeks to months to deliver results. This is due in part to the inclusion of inter-pulsar spatial and temporal correlations induced in PTA data by such a …


Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon Aug 2017

Modeling Gravitational-Wave Sources For Pulsar Timing Arrays, Joseph Simon

Theses and Dissertations

The recent direct detections of gravitational waves (GWs) from merging black holes by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the beginning of the era of GW astronomy and promises to transform fundamental physics. In the coming years, there is hope for detections across the mass scale of binary black holes.

Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - $\mu$Hz) GW observatories, which aim to directly detect GWs from binary supermassive black holes (SMBHs) ($\gtrsim 10^{7} \msun$). The frequency and black hole mass range that PTAs are sensitive to is orders of magnitude different from those LIGO is observing, …


Self-Force On Accelerated Particles, Thomas Michael Linz May 2015

Self-Force On Accelerated Particles, Thomas Michael Linz

Theses and Dissertations

The likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis Aug 2014

Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis

Theses and Dissertations

Gravitational Waves (GWs) are tiny ripples in the fabric of spacetime predicted by Einstein's theory of General Relativity. Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency GWs in the near future. Such a detection would be complementary to both LISA and LIGO GW efforts. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) that will most likely form an ensemble creating a stochastic GW background with possibly a few nearby/massive sources that will be individually resolvable. A direct detection of GWs will open a new window into the fields of …


Beyond The Standard Model: Lhc Phenomenology, Cosmology From Post-Inflationary Sources, And Dark Matter Physics, Brian J. Vlcek Dec 2013

Beyond The Standard Model: Lhc Phenomenology, Cosmology From Post-Inflationary Sources, And Dark Matter Physics, Brian J. Vlcek

Theses and Dissertations

It is the goal of this dissertation to demonstrate that beyond the standard model, certain theories exist which solve conflicts between observation and theory -- conflicts such as massive neutrinos, dark matter, unstable Higgs vacuum, and recent Planck observations of excess relativistic degrees of freedom in the early universe. Theories explored include a D-brane inspired construct of U(3) × Sp(1) × U(1) × U(1) extension of the standard model, in which we demonstrate several possible observables that may be detected at the LHC, and an ability to stabilize the Higgs mechanism. The extended model can also explain recent Planck data …


The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey Aug 2012

The Neutron-Star Equation Of State And Gravitational Waves From Compact Binaries, Benjamin David Lackey

Theses and Dissertations

The equation of state (EOS) of matter above nuclear density is currently uncertain by almost an order of magnitude. Fortunately, neutron stars (NS) provide an ideal laboratory for studying high density matter. In order to systematize the study of the EOS from NS observations, we introduce a parametrized high-density EOS that accurately fits theoretical candidate EOSs. We then determine the ability of several recent and near-future electromagnetic observations to constrain the parameter space of our EOS. Recent observations include measurements of masses, gravitational redshift, and spin period, and we find that high mass observations are the most useful at constraining …