Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Wisconsin Milwaukee

Theses/Dissertations

Data Analysis

Discipline
Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Measuring Deterministic And Stochastic Gravitational Waves With Pulsar Timing Array Experiments, Kristina Islo May 2019

Measuring Deterministic And Stochastic Gravitational Waves With Pulsar Timing Array Experiments, Kristina Islo

Theses and Dissertations

Pulsar timing arrays (PTAs) are uniquely poised to detect the nanohertz-frequency gravitational waves from supermassive black hole binaries (SMBHBs) formed during galaxy merger. Efforts are underway to observe three species of gravitational signal from these systems: the stochastic ensemble, individual, adiabatic binary inspirals, and bursts with memory. This dissertation discusses all three.

A typical Bayesian search for evidence of a stochastic gravitational wave background from the superposition of many unresolvable SMBHB inspirals requires weeks to months to deliver results. This is due in part to the inclusion of inter-pulsar spatial and temporal correlations induced in PTA data by such a …


Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade May 2015

Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade

Theses and Dissertations

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscillations of spacetime caused by the motion of masses. Although not yet directly detected, there is strong evidence for the existence of gravitational-waves. Detectable gravitational waves will come from dramatic astrophysical events, such as supernova explosions and collisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of detectors designed to make the first direct detection of gravitational waves. The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improvement in sensitivity that will virtually guarantee detections.

Gravitational-wave detections will not only illuminate mysterious astrophysical …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis Aug 2014

Searching For Gravitational Waves Using Pulsar Timing Arrays, Justin Ellis

Theses and Dissertations

Gravitational Waves (GWs) are tiny ripples in the fabric of spacetime predicted by Einstein's theory of General Relativity. Pulsar timing arrays (PTAs) offer a unique opportunity to detect low frequency GWs in the near future. Such a detection would be complementary to both LISA and LIGO GW efforts. In this frequency band, the expected source of GWs are Supermassive Black Hole Binaries (SMBHBs) that will most likely form an ensemble creating a stochastic GW background with possibly a few nearby/massive sources that will be individually resolvable. A direct detection of GWs will open a new window into the fields of …