Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Vermont

Theses/Dissertations

2018

Green Stormwater Infrastructure

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Bottom-Up Adaptive Management And Stakeholder Participation For Clean Water And Healthy Soils In A Complex Social-Ecological System, Sarah Coleman Jan 2018

Bottom-Up Adaptive Management And Stakeholder Participation For Clean Water And Healthy Soils In A Complex Social-Ecological System, Sarah Coleman

Graduate College Dissertations and Theses

Protection of water resources in a changing climate depends on bottom-up stewardship and adaptive management. From the ground up, a vital component is maintaining soil ecosystem services that regulate water, recycle nutrients, sequester carbon, provide food, and other benefits. Interacting spatial, social, and physical factors determine agricultural and stormwater management, and their impact on water. This dissertation explores these dimensions within a complex social-ecological system. The first chapter evaluates a participatory process to elicit solutions to complex environmental problems across science, policy, and practice. The second chapter studies on-farm soil assessment and its role in informing management decisions and supporting …


Water Quality Performance And Greenhouse Gas Flux Dynamics From Compost-Amended Bioretention Systems & Potential Trade-Offs Between Phytoremediation And Water Quality Stemming From Compost Amendments, Paliza Shrestha Jan 2018

Water Quality Performance And Greenhouse Gas Flux Dynamics From Compost-Amended Bioretention Systems & Potential Trade-Offs Between Phytoremediation And Water Quality Stemming From Compost Amendments, Paliza Shrestha

Graduate College Dissertations and Theses

Stormwater runoff from existing impervious surfaces needs to be managed to protect downstream waterbodies from hydrologic and water quality impacts associated with development. As urban expansion continues at a rapid pace, increasing impervious cover, and climate change yields more frequent extreme precipitation events, increasing the need for improved stormwater management. Although green infrastructure such as bioretention has been implemented in urban areas for stormwater quality improvements and volume reductions, these systems are seldom monitored to validate their performance. Herein, we evaluate flow attenuation, stormwater quality performance, and nutrient cycling from eight roadside bioretention cells in their third and fourth years …