Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Glacier Segmentation From Remote Sensing Imagery Using Deep Learning, Bibek Aryal Dec 2022

Glacier Segmentation From Remote Sensing Imagery Using Deep Learning, Bibek Aryal

Open Access Theses & Dissertations

Large-scale study of glaciers improves our understanding of global glacier change and is imperative for monitoring the ecological environment, preventing disasters, and studying the effects of global climate change. In recent years, remote sensing imagery has been preferred over riskier and resource-intensive field visits for tracking landscape level changes like glaciers. However, periodic manual labeling of glaciers over a large area is not feasible due to the considerable amount of time it requires while automatic segmentation of glaciers has its own set of challenges. Our work aims to study the challenges associated with segmentation of glaciers from remote sensing imagery …


When Is Deep Learning Better And When Is Shallow Learning Better: Qualitative Analysis, Salvador Robles Herrera, Martine Ceberio, Vladik Kreinovich Apr 2022

When Is Deep Learning Better And When Is Shallow Learning Better: Qualitative Analysis, Salvador Robles Herrera, Martine Ceberio, Vladik Kreinovich

Departmental Technical Reports (CS)

In many practical situations, deep neural networks work better than the traditional "shallow" ones, however, in some cases, the shallow neural networks lead to better results. At present, deciding which type of neural networks will work better is mostly done by trial and error. It is therefore desirable to come up with some criterion of when deep learning is better and when shallow is better. In this paper, we argue that this depends on whether the corresponding situation has natural symmetries: if it does, we expect deep learning to work better, otherwise we expect shallow learning to be more effective. …