Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 54

Full-Text Articles in Physical Sciences and Mathematics

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson Nov 2023

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson

USF Tampa Graduate Theses and Dissertations

Porphyrins are a group of heterocyclic macrocycles that play crucial roles in various biological processes such as electron transfer, catalysis, and sensing. Hemoglobin, which carries oxygen in the blood of mammals, and chlorophyll, which drives photosynthesis in plants and algae, are both porphyrins. The ability of porphyrins to bind metal ions and their unique electronic and photophysical properties make them an excellent platform for designing functional materials for various applications, often drawing inspiration from their function in nature. Metal-organic frameworks (MOFs) are a class of porous materials that have been extensively studied in recent years due to their high surface …


Development Of An Automated Platform For Sensing And Differentiating Vapor-Phase Btex Constituents, Jonathan Samuelson Nov 2022

Development Of An Automated Platform For Sensing And Differentiating Vapor-Phase Btex Constituents, Jonathan Samuelson

USF Tampa Graduate Theses and Dissertations

Light aromatic hydrocarbons are an inevitable byproduct of fossil fuel extraction, refinement, distribution, and use. The four lightest and most prevalent of these are benzene, toluene, ethylbenzene, and xylene, which are known collectively as BTEX. In spite of their chemical similarity these species have markedly different effects on human health and substantially different concentrations are permitted by OSHA in workplaces and by the EPA in ambient air and groundwater. Real-time detection, identification, and quantification of these species is therefore of great importance wherever they see industrial use.This work represents the continuation and advancement of a line of research in which …


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …


Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams Nov 2021

Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams

USF Tampa Graduate Theses and Dissertations

The prediction of the structure of a crystal given only the constituent elements is one of the greatest challenges in both materials science and computational science alike. If one were to try to predict a novel crystal by brute force, meaning by arranging the atoms in every possible position of the unit cell and optimizing the geometry to find the energy minima of the potential energy surface, the amount of computer resources required to complete the calculation on the timescale of a few years would vastly exceed the currently installed computational capacity of the entire world. Fortunately, several methods have …


The Photophysical Studies Of Transition Metal Polyimines Encapsulated In Metal Organic Frameworks (Mof’S), Jacob M. Mayers Nov 2021

The Photophysical Studies Of Transition Metal Polyimines Encapsulated In Metal Organic Frameworks (Mof’S), Jacob M. Mayers

USF Tampa Graduate Theses and Dissertations

Light harvesting systems provide a platform that converts solar energy into other forms of energy. One of the most common examples of photon capturing and conversion into chemical energy is observed in photosynthetic organisms in both Eurkaroyic and Prokaryotic domains. Nature provides a model for successful light harvesting platforms which includes the compartmentalization of antenna complexes that contain separated donor and acceptor pairs that participate in efficient electron transfer processes. In order to mimic such systems, crystalline porous materials that exhibits regular cavities and pore dimensions provides an excellent starting place. Metal organic frameworks (MOFs) are a class of porous …


Investigation Of Immobilized Enzymes In Confined Environment Of Mesoporous Host Matrices, Xiaoliang Wang Nov 2021

Investigation Of Immobilized Enzymes In Confined Environment Of Mesoporous Host Matrices, Xiaoliang Wang

USF Tampa Graduate Theses and Dissertations

Enzyme immobilization in metal-organic frameworks (MOFs) as a promising strategy, is attracting the interest of scientists from different disciplines with the expansion of MOF’s development. Different from other traditional host materials, their unique strengths of high surface areas, large yet adjustable pore sizes, functionalizable pore walls, and diverse architectures make MOFs an ideal platform to investigate hosted enzymes, which is critical to the industrial and commercial process. In addition to the protective function of MOFs, the extensive roles of MOFs in the enzyme immobilization are being well-explored by making full use of their remarkable properties like well-defined structure, high porosity, …


Texturing In Bi2Te3 Alloy Thermoelectric Materials: An Applied Physics Investigation, Oluwagbemiga P. Ojo Oct 2021

Texturing In Bi2Te3 Alloy Thermoelectric Materials: An Applied Physics Investigation, Oluwagbemiga P. Ojo

USF Tampa Graduate Theses and Dissertations

Thermoelectric devices provide the means for direct conversion between heat and electricity. The device conversion efficiency, or performance, is directly related to the thermoelectric figure of merit, ZT, of the working materials. Bismuth telluride alloys are the materials currently in use in most thermoelectric devices for near room temperature solid-state refrigeration and power conversion applications. The vast majority of publications in the literature on thermoelectricity report on investigations towards developing new materials with enhanced thermoelectric properties, however Bi2Te3 alloys have been used in thermoelectric devices for decades.

In this thesis, an investigation of crystallographic texturing on large …


Preparation And Characterization Of Single Layer Conducting Polymer Electrochromic And Touchchromic Devices, Sharan Kumar Indrakar Jul 2021

Preparation And Characterization Of Single Layer Conducting Polymer Electrochromic And Touchchromic Devices, Sharan Kumar Indrakar

USF Tampa Graduate Theses and Dissertations

Electrochromic devices (ECDs) have triggered great interest because of their potential applicability in energy-efficient buildings and low power display systems, including reflective type smart windows/mirrors and wearable-flexible devices. In the past decades, electrochromic technologies with different device structures and materials have been proposed. The idea of employing a simple device structure with a durable, cost effective electrolyte is crucial to designing and manufacturing high-performance ECDs. With this idea in mind, this thesis describes the various efforts to develop a simple ECD comprising of a composite single active layer gel electrolyte, sandwiched between two transparent conducting electrodes, lasting over 10,000 cycles …


Fabrication And Characterization Methods Of Self-Cleaning Coatings For Solar Panels Application, Mohammed Khaleel M Alhussain Mar 2021

Fabrication And Characterization Methods Of Self-Cleaning Coatings For Solar Panels Application, Mohammed Khaleel M Alhussain

USF Tampa Graduate Theses and Dissertations

Transparent self-cleaning coatings with superhydrophobic and superhydrophilic behavior are of great interest in a wide range of industrial applications such as automotive, solar panels, windows, and optical devices. Each has its uses, properties, and characteristics. For the use of these coatings on solar panels, certain features are important in maintaining the efficiency of the panels in different weather conditions and reducing the operation and maintenance cost, such as self-cleaning, high transparency, antifouling, anti-fogging, and anti-icing. Herein, we have investigated the fabrication of self-cleaning coatings using two simple methods and ways to improve their characteristics. In the first method, a hydrophobic …


Conversion From Metal Oxide To Mof Thin Films As A Platform Of Chemical Sensing, Meng Chen Nov 2020

Conversion From Metal Oxide To Mof Thin Films As A Platform Of Chemical Sensing, Meng Chen

USF Tampa Graduate Theses and Dissertations

Chemical sensor is working as a widely used device which can be applied to the detection of specific chemicals that are existing in the environment especially in gas phase. The detection of combustible and toxic chemicals can be extremely important in the field of both industrial and civil activities. The chemical sensor is commonly operating by utilizing a chemical or physical interaction between the specific chemical compound and the sensing functional unit, to obtain an electronic signal caused by the property change and realize the chemical detection. Traditional chemical gas sensors such as catalytic gas sensor, thermal conductivity gas sensor, …


Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh Nov 2020

Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh

USF Tampa Graduate Theses and Dissertations

Atomically thin two-dimensional (2D) materials have attracted a growing interest in the lastdecade from the fundamental point of view as well as their potential applications in functional devices. Due to their high surface-to-volume ratio, the physical properties of 2D materials are very sensitive to the environmental factor such as surrounding media and illumination conditions (e.g. light-mater interaction). In the first part of this dissertation I will present recent advances in developing laser-assisted methods to tune the physical properties of 2D transition metal dichalcogenides (TMDs). We demonstrate laser-assisted chemical modification ultrathin TMDs, locally replacing selenium by sulfur atoms. The photo-conversion process …


Sustainable Non-Noble Metal Based Catalysts For High Performance Oxygen Electrocatalysis, Swetha Ramani Nov 2020

Sustainable Non-Noble Metal Based Catalysts For High Performance Oxygen Electrocatalysis, Swetha Ramani

USF Tampa Graduate Theses and Dissertations

Current energy crisis has dramatically shifted the focus of technological advancements towards clean and renewable forms of energy. Continued dependence and utilization of fossil fuels has created global awareness on harmful greenhouse gas emissions and climate change. A need for sustainable technology has gained a lot of significance in the recent years. This has led to the development of devices and technologies that rely on environmentally friendly electrochemical conversion and storage of energy. One such advancement that generates electrical energy from chemical reactions is known as fuel cell technology. While fuel cells have demonstrated potential in replacing the conventional technologies …


Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez Jun 2020

Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez

USF Tampa Graduate Theses and Dissertations

Since the isolation of graphene in 2004, two-dimensional (2D) layered materials, specially the transition metal dichalcogenides (TMDs), have attracted immense interest from theoreticians and experimentalist due to the diversity of properties presented in this family of materials. The main reason for the interest in such materials has been the observation of emergent properties as a consequence of the reduced dimensions, i.e. the monolayer regime. Initially the monolayer regime was obtained via the scotch-tape method. The implementation of exfoliation techniques was successful since layered 2D materials are composed of stacked layers held together by weak van der Walls forces that permits …


Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii Apr 2020

Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii

USF Tampa Graduate Theses and Dissertations

2D layered materials are becoming an important area of research due to their exceptional electrical and optical properties. Specifically, 2D layered monochalcogenides are known for their high carrier motilities, whereas layered metal halides have been shown to have noteworthy photoresponsivity. Despite the assortment of 2D layered materials, the search for reliable and scalable synthesis methods is still a challenge in this family of materials. Often a certain growth technique will compromise a desirable trait needed for further fabrication, such as the quality of the crystal or its coverage on a substrate. In this study, two growth techniques that incorporate changeable …


First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong Nov 2019

First-Principles Simulations Of Materials Under Extreme Conditions, Kien Nguyen Cong

USF Tampa Graduate Theses and Dissertations

The investigation of materials at extreme conditions of high pressure and temperature (high-PT), has been one of the greatest scientific endeavors in condensed mater physics, chemistry, astronomy, planetary, and material sciences. Being subjected to high-PT conditions, materials exhibit dramatic changes in both atomic and electronic structure resulting in an emergence of exceptionally interesting phenomena including structural and electronic phase transitions, chemical reactions, and formation of novel compounds with never-previously observed physical and chemical properties. Although new exciting experimental developments in static and dynamic compression combined with new diagnostics/characterization methods allow to uncover new processes and phenomena at high P-T conditions, …


Fabrication And Characterization Of Electrical Energy Storage And Harvesting Energy Devices Using Gel Electrolytes, Belqasem Aljafari Nov 2019

Fabrication And Characterization Of Electrical Energy Storage And Harvesting Energy Devices Using Gel Electrolytes, Belqasem Aljafari

USF Tampa Graduate Theses and Dissertations

Redox-active materials in the bulk of gel electrolytes are unquestionably holding the primary roles in developing energy harvesting and storage technology. Both technologies are necessary in order to cope with the current challenges of the environmental crises of global warming and finite non-renewable sources while the demand for energy modern societies have been speedily increased. One of the most challenges of making a hybrid device of energy conversion and storage is the cost of the fabrication process. Therefore, gel electrolyte-based materials with redox-active properties can potentially be a promising solution to improve the performance of electrochemical and photoelectrochemical devices for …


Thermo-Oxidative Degradation Of Hdpe Geomembranes: Effect Of Phenolic Antioxidant And Hindered Amine Light Stabilizer Concentrations, Yasin Kocak Oct 2019

Thermo-Oxidative Degradation Of Hdpe Geomembranes: Effect Of Phenolic Antioxidant And Hindered Amine Light Stabilizer Concentrations, Yasin Kocak

USF Tampa Graduate Theses and Dissertations

High density polyethylene (HDPE) geomembrane is most common geomembrane which is mainly used for civil engineering applications. However, HDPE geomembrane loses its properties under oxidative degradation progress. This study aims to assess geomembranes which have different percentage of phenolic antioxidant and hindered amine light stabilizer (HALS) with under the six months of the thermal-oxidative degradation. The interactions between phenolic antioxidant, HALS and carbon black can affect the mechanical, physical and chemical properties. To monitor these properties, Differential Scanning Calorimetry (DSC), Fourier-transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM/EDX), Melt Index tests, …


Phase Evolution And Dynamic Behavior In Materials With Noncollinear Spin Textures, Eleanor M. Clements Apr 2019

Phase Evolution And Dynamic Behavior In Materials With Noncollinear Spin Textures, Eleanor M. Clements

USF Tampa Graduate Theses and Dissertations

Noncentrosymmetric magnetic materials have gained special attention due to their ability to stabilize topologically nontrivial magnetic states via the competition between symmetric exchange and the antisymmetric Dzyaloshinskii-Moriya (DM) interaction. The spin struc- tures in these materials have become a center of interest for spintronics applications due to their stable, particle-like properties, and high degree of tunability via control of external parameters, such as magnetic and/or electric field and temperature. Understanding how these robust magnetic structures stabilize, evolve, dynamically respond, and adhere to existing models, all in the presence of external stimuli, are topics of fundamental interest. In this dissertation, the …


Conducting Polymer Based Gel Electrolytes For Ph Sensitivity, Aditya Jagannath Kashyap Mar 2019

Conducting Polymer Based Gel Electrolytes For Ph Sensitivity, Aditya Jagannath Kashyap

USF Tampa Graduate Theses and Dissertations

The evaluation of concentration of ions and molecules with the help of biosensors have been regarded as an emerging technology. Bio and chemical sensors have a variety of applications in the field of medicine, military, environmental and food industries alike. With an estimated investment growth of over 4.31% in the development of pH sensors in the next five year, the objective of a developing a robust measurement system is all the more required. The scope of this research is to evaluate the ability of conducting polymer-based gel electrolytes for pH sensitivity, as a function of the transistor characteristics using an …


The Effect Of Processing Conditions On The Energetic Diagram Of Cdte Thin Films Studied By Photoluminescence, Shamara P. Collins Jul 2018

The Effect Of Processing Conditions On The Energetic Diagram Of Cdte Thin Films Studied By Photoluminescence, Shamara P. Collins

USF Tampa Graduate Theses and Dissertations

The photovoltaic properties of CdTe-based thin films depend on recombination levels formed in the CdTe layer and at the heterojunction. The localized states are resultant of structural defects (metal sublattice, chalcogen sublattice, interstitial), controlled doping, deposition process, and/or post-deposition annealing. The photoluminescence study of CdTe thin films, from both the bulk and heterojunction, can reveal radiative states due to different defects or impurities. Identification of defects allows for potential explanation of their roles and influence on solar cell performance. A thorough understanding of the material properties responsible for solar cell performance is critical in further advancing the efficiency of devices. …


Computational Discovery Of Energetic Polynitrogen Compounds At High Pressure, Brad A. Steele Apr 2018

Computational Discovery Of Energetic Polynitrogen Compounds At High Pressure, Brad A. Steele

USF Tampa Graduate Theses and Dissertations

High-nitrogen-content energetic compounds containing multiple N-N bonds are an attractive alternative towards developing new generation of environmentally friendly, and more powerful energetic materials. High-N content translates into much higher heat of formation resulting in much larger energy output, detonation pressure and velocity upon conversion to large amounts of non-toxic, strongly bonded N2 gas. This thesis describes recent advances in the computational discovery of group-I alkali and hydrogen polynitrogen materials at high pressures using powerful first-principles evolutionary crystal structure prediction methods. This is highlighted by the discovery of a new family of materials that consist of long-sought after all-nitrogen N􀀀 5 …


In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan Mar 2018

In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan

USF Tampa Graduate Theses and Dissertations

The Cadmium Telluride thin film solar cell is one of the leading photovoltaic technologies. Efficiency improvements in the past decade made it a very attractive and practical source of renewable energy. Considering the theoretical limit, there is still room for improvement, especially the cell’s open circuit voltage (VOC). To improve VOC, the p-type carrier concentration and minority carrier lifetime of the CdTe absorber needs to be improved. Both these parameters are directly related to the point defect distribution of the semiconductor, which is a function of deposition stoichiometry, dopant incorporation and post-deposition treatments.

CdTe films were deposited by the Elemental …


Supported Perovskite-Type Oxides: Establishing A Foundation For Co2 Conversion Through Reverse Water-Gas Shift Chemical Looping, Bryan J. Hare Mar 2018

Supported Perovskite-Type Oxides: Establishing A Foundation For Co2 Conversion Through Reverse Water-Gas Shift Chemical Looping, Bryan J. Hare

USF Tampa Graduate Theses and Dissertations

Perovskite-type oxides show irrefutable potential for feasible thermochemical solar-driven CO2 conversion. These materials exhibit the exact characteristics required by the low temperature reverse water-gas shift chemical looping process. These properties include structural endurance and high oxygen redox capacity, which results in the formation of numerous oxygen vacancies, or active sites for CO2 conversion. A major drawback is the decrease in oxygen self-diffusion with increasing perovskite particle size. In this study, the La0.75Sr0.25FeO3 (LSF) perovskite oxide was combined with various supports including popular redox materials CeO2 and ZrO2 along with more abundant …


Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva Nov 2017

Manipulating Electromagnetic Waves With Enhanced Functionalities Using Nonlinear And Chiral Metamaterials, Sinhara Rishi Malinda Silva

USF Tampa Graduate Theses and Dissertations

Metamaterials are artificial structures, which periodically arranged to exhibit fascinating electromagnetic properties, not existing in nature. A great deal of research in the field of metamaterial was conducted in a linear regime, where the electromagnetic responses are independent of the external electric or magnetic fields. Unfortunately, in linear regime the desired properties of metamaterials have only been achieved within a narrow bandwidth, around a fixed frequency. Therefore, nonlinearity is introduced into metamaterials by merging meta-atoms with well-known nonlinear materials. Nonlinear metamaterials are exploited in this dissertation to introduce and develop applications in microwave frequency with broadband responses. The nonlinearity was …


Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda Nov 2017

Growth, Characterization, And Function Of Ferroelectric, Ferromagnetic Thin Films And Their Heterostructures, Mahesh Hordagoda

USF Tampa Graduate Theses and Dissertations

With recent trends in miniaturization in the electronics sector, ferroelectrics have gained popularity due to their applications in non-volatile RAM. Taking one step further researchers are now exploring multiferroic devices that overcome the drawbacks of ferroelectric (FE) and ferromagnetic (FM) RAM’s while retaining the advantages of both. The work presented in this dissertation focuses on the growth of FE and FM thin film structures. The primary goals of this work include, (1) optimization of the parameters in the pulsed laser deposition (PLD) of FE and FM films and their heterostructures, (2) development of a structure-property relation that leads to enhancements …


Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark Jun 2017

Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark

USF Tampa Graduate Theses and Dissertations

Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for …


Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai Apr 2017

Interference Of Light In Multilayer Metasurfaces: Perfect Absorber And Antireflection Coating, Khagendra Prasad Bhattarai

USF Tampa Graduate Theses and Dissertations

We have studied several metamaterials structures with multiple layers by explaining them theoretically and verifying experimentally. The engineered structures we have designed work either as a perfect absorber or antireflection coating. The multilayer model as we call it Three Layer Model (TLM) has been developed, which gives the total reflection and transmission as a function of reflection and transmission of individual layers. By manipulating the amplitude and phase of the reflection and the transmission of the individual layers, we can get the required functionality of the optoelectronic devices. To get zero reflection in the both perfect absorber and the antireflection …


Reduced Dimensionality Effects In Gd-Based Magnetocaloric Materials, Hillary Faith Belliveau Nov 2016

Reduced Dimensionality Effects In Gd-Based Magnetocaloric Materials, Hillary Faith Belliveau

USF Tampa Graduate Theses and Dissertations

Magnetic refrigeration based on the magnetocaloric effect (MCE) is a promising alternative to conventional gas compression based cooling techniques. Understanding impacts of reduced dimensionality on the magnetocaloric response of a material such as Gadolinium (Gd) or its alloys is essential in optimizing the performance of cooling devices, which is also the overall goal of this thesis. We have determined, in the first part of the thesis, that laminate structures of pure Gd produced by magnetron sputtering have several disadvantages. The target material (pure Gd), ultra-high vacuum components, and the electrical energy it takes to run the manufacturing process are all …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Metal-Organic Frameworks As Potential Platforms For Carbon Dioxide Capture And Chemical Transformation, Wenyang Gao Oct 2016

Metal-Organic Frameworks As Potential Platforms For Carbon Dioxide Capture And Chemical Transformation, Wenyang Gao

USF Tampa Graduate Theses and Dissertations

The anthropogenic carbon dioxide (CO2) emission into the atmosphere, mainly through the combustion of fossil fuels, has resulted in a balance disturbance of the carbon cycle. Overwhelming scientific evidence proves that the escalating level of atmospheric CO2 is deemed as the main culprit for global warming and climate change. It is thus imperative to develop viable CO2 capture and sequestration (CCS) technologies to reduce CO2 emissions, which is also essential to avoid the potential devastating effects in future. The drawbacks of energy-cost, corrosion and inefficiency for amine-based wet-scrubbing systems which are currently used in industry, …