Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly Jul 2022

Novel Synthetic Strategies Toward Polyolefin-Grafted Nanoparticles, Richard Tran Ly

Theses and Dissertations

Surface functionalization of nanoparticles has proven to be a powerful and versatile strategy in the development of various materials with advanced properties. Polymer brush composition can range from complex copolymers to more simplistic polyolefin, and by functionalizing nanoparticle surfaces, mobility of distinct particles can then be tuned and, therefore, control over dispersion in a polymer matrix can be achieved. Presented in this dissertation are new synthetic strategies for the preparation of polymer nanocomposites.

The first chapter covers a novel synthetic strategy for ethylene/propylene-like copolymers grafted to silica nanoparticles. This approach utilizes Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization to promote living …


Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh Jul 2021

Characterization Of Ph – Responsive Nanocage Based On The Ferritin Iron Storage Protein, Satyam Singh

Theses and Dissertations

The iron-storage protein ferritin (Ftn) assembles into a protein cage structure with 24 subunits and octahedral (4-fold, 3-fold, 2-fold) symmetry. Each monomeric subunit contains a robust four-helix bundle fold. The fully assembled Ftn structure has a high degree of thermal stability (up to 100°C), a mono dispersed size (12 nm in diameter), and a large central cavity (7-8 nm in diameter). The central cavity stores ferric iron in phylogenetically diverse group of organisms, including humans. The central cavity has been used for encapsulation of cargoes such as other metals, contrast agents for imaging, small molecule drugs for therapy, …


Two Aspects Of Magnetic Nanoparticle Self-Assembly On Thin-Film Multilayers: Custom Media Properties And Accurate Determination Of Nanoparticle Anisotropy Constant, Sara L. Fitzgerald Jul 2021

Two Aspects Of Magnetic Nanoparticle Self-Assembly On Thin-Film Multilayers: Custom Media Properties And Accurate Determination Of Nanoparticle Anisotropy Constant, Sara L. Fitzgerald

Theses and Dissertations

ZFC/FC moment versus temperature measurements are a common technique to determine magnetic properties of nanoparticles. In this work, I varied both applied field strength and nanoparticle concentration to study resulting changes in blocking temperature, TB, and anisotropy constant, K. TB and K values were obtained using both existing and new analytic methods. Accurate determination of these parameters helps researchers optimize the use of magnetic nanoparticles for a variety of applications, including magnetic heating, drug delivery, and magnetic field-directed self-assembly. For magnetic self-assembly particularly, not only nanoparticle properties, but also the magnetic properties of the substrate alter …


Synthesis And Design Of Novel Polymer Grafted Nanoparticles Relevant To Drug Delivery Vehicles For Biomedical Applications, Maan Abduldiyem Hassan Al-Ali Oct 2020

Synthesis And Design Of Novel Polymer Grafted Nanoparticles Relevant To Drug Delivery Vehicles For Biomedical Applications, Maan Abduldiyem Hassan Al-Ali

Theses and Dissertations

The modification of inorganic nanoparticles with organic polymer chains has become a significant field of study for the engineering of advanced nanocomposite materials. This dissertation presents the design, synthesis, and characterization of novel polymer grafted silica nanoparticles as new strategies to combat bacterial resistance. Described herein is the synthesis of monomers that have been graft polymerized onto silica nanoparticles that can be used as a delivery drug vehicle for biomedical applications. The polymerization of these monomers was performed via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular design of the RAFT agents that are attached to the surfaces of the …


Synthesis And Design Of Novel Polymer Grafted Nanoparticles Relevant To Drug Delivery Vehicles For Biomedical Application, Maan Abduldiyem Hassan Al-Ali Jan 2020

Synthesis And Design Of Novel Polymer Grafted Nanoparticles Relevant To Drug Delivery Vehicles For Biomedical Application, Maan Abduldiyem Hassan Al-Ali

Theses and Dissertations

The modification of inorganic nanoparticles with organic polymer chains has become a significant field of study for the engineering of advanced nanocomposite materials. This dissertation presents the design, synthesis, and characterization of novel polymer grafted silica nanoparticles as new strategies to combat bacterial resistance. Described herein is the synthesis of monomers that have been graft polymerized onto silica nanoparticles that can be used as a delivery drug vehicle for biomedical applications. The polymerization of these monomers was performed via reversible addition-fragmentation chain transfer (RAFT) polymerization. The molecular design of the RAFT agents that are attached to the surfaces of the …


The Development Of Multi-Functional System That Combine Patterned Hydrogels, Plasmin-Degradable Nanoparticles And Stem Cells For Applications In Tissue Engineering And Growth Factors Delivery, Safaa I. Kader Oct 2019

The Development Of Multi-Functional System That Combine Patterned Hydrogels, Plasmin-Degradable Nanoparticles And Stem Cells For Applications In Tissue Engineering And Growth Factors Delivery, Safaa I. Kader

Theses and Dissertations

This thesis spots the light on the development of a novel multi-functionalized system for application in tissue engineering and on-demand morphogens delivery. Three types of materials used in this study are synthetic polymer, biopolymer, and nanomaterials. Polyethylene glycol (PEG), a synthetic polymer was chosen in this study because of its high biocompatibility, non-immunogenicity, inert nature, ease of modification, and reduces protein denaturation to provide a wide range of physical and mechanical properties. Here, PEG is used one time as a hydrogel, linear polyethylene glycol-co-lactide (LPELA), and another time as peptide-PEG based nanoparticles (PxSPCP). Gelatin, a natural polymer has been widely …


Structural Transformations Of Multimetallic Nanoparticles, Guangfang Li Jan 2018

Structural Transformations Of Multimetallic Nanoparticles, Guangfang Li

Theses and Dissertations

Atomic-level understanding of the structural transformations of multimetallic nanoparticles (NPs) triggered by external stimuli is of vital importance to the enhancement of our capabilities to precisely fine-tailor the key structural parameters and thereby to fine-tune the catalytic properties of the NPs. In this work, I firstly show that Au-Cu bimetallic NPs demonstrate stoichiometry-dependent architectural evolutions during chemical dealloying processes and nanoporosity-evolving percolation dealloying only occurs for Au-Cu alloy NPs with Cu atomic fractions above the parting limit. The electrochemically active surface area and the specific activity of the dealloyed nanoframes can be systematically tuned to achieve the optimal electrocatalytic activity. …


Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli Jan 2018

Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli

Theses and Dissertations

This dissertation presents the design, synthesis, and characterization of polydiene grafted nanoparticles as a way to tailor nanocomposite interfaces and properties via interface design. The polymerization of dienes was done via reversible addition fragmentation chain transfer (RAFT) polymerization. The grafting of polymer chains on the surface of silica nanoparticles can be controlled through the molecular design of the RAFT agents attached to the nanoparticles surface. The properties of the nanocomposites largely depended on the interface between the particles and the polymer matrix. In the first part of this work, the polymerization of diene monomers was done on 15 nm diameter …


Fabrication And Application Of Functional Polymer-Protein Coreshell Nanoparticles, Lin Lu Jan 2018

Fabrication And Application Of Functional Polymer-Protein Coreshell Nanoparticles, Lin Lu

Theses and Dissertations

The study of polymer-protein nanoparticles is of increasing interest due to their various potential applications in biosensing, imaging, bioseparations, gene and drug delivery, etc. Synthetic polymers can be tailored with different functional groups and properties, therefore, they can serve as platforms to impart proteins with additional features and assist proteins to better perform biological functions. In this dissertation work, we were mainly focusing on the preparation of polymer-protein core-shell nanoparticles by synthesizing new functional polymers and assembling them with proteins for different applications. In chapter 1, a pyridine grafted diblock copolymer P(CL-g-Py)-b-PCL was prepared through ROP and CuAAC reactions. …


Polymer Grafted Nanoparticles For Designed Interfaces In Polymer Nanocomposites, Mohammad Mohammadkhani Jan 2017

Polymer Grafted Nanoparticles For Designed Interfaces In Polymer Nanocomposites, Mohammad Mohammadkhani

Theses and Dissertations

This dissertation presents the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement from this interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of nanocomposites by controlling the interface between the particles and the polymer matrix.

In the first part of this work, compatibility of 15 nm silica nanoparticles grafted with different alkyl methacrylates with linear low density polyethylene was investigated. SI-RAFT polymerization of hexyl, lauryl, and stearyl methacrylate on silica …


Uptake Of Nanoparticles By Vibrio Gazogenes, Shonda Renee Jones Jan 2016

Uptake Of Nanoparticles By Vibrio Gazogenes, Shonda Renee Jones

Theses and Dissertations

Vibrio gazogenes, a Gram-negative species of marine bacteria, was capable of transporting 20 nm (diameter) surface-carboxylated, polystyrene, fluorescent FluoSpheres® microspheres (excitation/emission = 505/515) through the outer membrane, which was indicated by a detectable decrease in the fluorescence intensity of the nanoparticles in the culture medium. A mechanism of transport was investigated involving the ATP-binding cassette (ABC) protein transporters that traverse the outer membrane. Inhibition of the ABC transporters did not prevent the entry of the nanoparticles into the cell, suggesting there was an alternate mechanism of transport. The addition of nanoparticles to the culture medium also did not provide any …


Development Of Protein-Polymer Core-Shell Nanoparticles (Ppcs-Nps) As Efficient Vehicles To Deliver Therapeutic Agents Across Blood Brain Barrier (Bbb), Napat Tandikul Jan 2016

Development Of Protein-Polymer Core-Shell Nanoparticles (Ppcs-Nps) As Efficient Vehicles To Deliver Therapeutic Agents Across Blood Brain Barrier (Bbb), Napat Tandikul

Theses and Dissertations

Blood Brain Barrier (BBB) plays a main role as selective barrier which controls and limits access of chemicals, molecules and therapeutic agents from blood to brain. The BBB endothelial cells are connected by Tight Junctions (TJs) which close intracellular spaces between the endothelial cells and block the free diffusion of substances, therefore many potential drugs for treating human brain diseases cannot reach the brain in sufficient concentration. Recently, many studies have thrown an interest in development of nanoparticles for delivering drugs and imaging agents across BBB. Our research group has developed protein-polymer core-shell nanoparticles (PPCS-NPs) which demonstrate great potential for …


Facile Method For Large Scale Alignment Of One Dimensional Nanoparticles And Its Biomedical Application, Sheng Feng May 2015

Facile Method For Large Scale Alignment Of One Dimensional Nanoparticles And Its Biomedical Application, Sheng Feng

Theses and Dissertations

Topographical cues can profoundly affect cellular behaviors. This thesis investigate how to utilize the topographical cues generated by two techniques, flow assembly and electrospinning, to regulate cellular behaviors.

First of all, a facile and robust method to align one-dimensional (1D) nanoparticles (NPs) in large scale has been developed. Using flow assembly, representative rod-like nanoparticles, including tobacco mosaic virus (TMV), gold nanorods and bacteriophage M13, have been aligned inside capillaries by controlling flow rate and substrate surface properties. The properties of 1D NPs, such as stiffness and aspect ratio, play a critical role in the alignment. Furthermore, these hierarchically organized structures …


Modification Of Nanoparticles For Designed Interfaces, Tony Lee Neely, Jr. Jan 2015

Modification Of Nanoparticles For Designed Interfaces, Tony Lee Neely, Jr.

Theses and Dissertations

The work contained herein, is focused on the design, synthesis, and characterization of polymer nanocomposite interfaces and the property enhancement afforded from said interface design. Through the use of reversible addition fragmentation chain transfer (RAFT) polymerization for the grafting of polymer chains to silica nanoparticles, the surface of silica nanoparticles can be manipulated to tune the properties of the nanocomposite as a whole.

In the first part of this work, heterogeneity is introduced onto the surface of silica nanoparticles via a sequential RAFT polymerization to afford a bimodal brush system. A densely grafted, short brush population is polymerized from the …


Synthesis And Characterization Of Polymer Nanomaterials Using Controlled Radical Polymerization, Lei Wang Aug 2014

Synthesis And Characterization Of Polymer Nanomaterials Using Controlled Radical Polymerization, Lei Wang

Theses and Dissertations

This research focuses on creating and investigating polymer/organic bound interfaces on nanoparticles with advanced architectures to tailor the properties of polymer nanocomposites for various applications. Reversible addition-fragmentation chain transfer (RAFT) polymerization and a toolbox of surface functionalization from the simple to the advanced were developed to prepare the polymer nanomaterials.

In the first part (Chapter 2), a variety of RAFT agents (xanthate, dithiocarbamate and trithiocarbonate) were used to mediate the polymerizations of several classes of free radical polymerizable monomers. These monomers consist of styrene, methyl acrylate, methyl methacrylate, vinyl acetate and isoprene, which have different activities and require different classes …