Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Haven

2018

Au@h-Al2O3

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Au@H-Al2o3 Analogic Yolk–Shell Nanocatalyst For Highly Selective Synthesis Of Biomass-Derived D-Xylonic Acid Via Regulation Of Structure Effects, Jiliang Ma, Zewei Liu, Junlong Song, Linxin Zhong, Dequan Xiao, Hongxia Xi, Xuehui Li, Runcang Sun, Xinwen Peng Oct 2018

Au@H-Al2o3 Analogic Yolk–Shell Nanocatalyst For Highly Selective Synthesis Of Biomass-Derived D-Xylonic Acid Via Regulation Of Structure Effects, Jiliang Ma, Zewei Liu, Junlong Song, Linxin Zhong, Dequan Xiao, Hongxia Xi, Xuehui Li, Runcang Sun, Xinwen Peng

Chemistry and Chemical Engineering Faculty Publications

Selective oxidation of biomass-based monosaccharides into value-added sugar acids is highly desired, but limited success of producing D-xylonic acid has been achieved. Herein, we report an efficient catalyst system, viz., Au nanoparticles anchored on the inner walls of hollow Al2O3 nanospheres (Au@h- Al2O3), which could catalyze the selective oxidation of D-xylose into D-xylonic acid under base-free conditions. The mesoporous Al2O3 shell as the adsorbent first adsorbed D-xylose. Then, the interface of Au nanoparticles and Al2O3 as active sites spontaneously dissociated O2, and …