Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

College Of Engineering Senior Design Competition Fall 2009, University Of Nevada, Las Vegas Dec 2009

College Of Engineering Senior Design Competition Fall 2009, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Each student in his or her senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. The senior design project encourages the student to use everything learned in the engineering program to create a practical, real-world solution to an engineering challenge.

A highlight of the year-long senior design project is the senior design competition. This competition, which usually takes place the week before finals each semester, helps focus the senior students on increasing the quality and potential for commercial application for their design projects.

Judges from local industry evaluate the projects on innovation, commercial …


Reflective Optics Cpv Panels Enabling Large Scale, Reliable Generation Of Solar Energy Cost Competitive With Fossil Fuels, S. Horne, M. Mcdonald, N. Hartsoch, K. Desy Dec 2009

Reflective Optics Cpv Panels Enabling Large Scale, Reliable Generation Of Solar Energy Cost Competitive With Fossil Fuels, S. Horne, M. Mcdonald, N. Hartsoch, K. Desy

Publications (E)

The objective of this 18 month subcontract was the improvement of reflective optics CPV panels to enable the large-scale, reliable production of solar electricity to meet SAI-established LCOE targets, and ultimately provide a path to solar power at parity with or better than the cost of energy generated utilizing fossil fuels. To this end, SolFocus has completed this subcontract with great success as evidenced by the end results of a CPV panel with conversion efficiencies greater than the targeted 22% and manufacturing capabilities with a run rate capacity far exceeding the milestone benchmark >3MW.


Wind Energy And Power System Operations: A Review Of Wind Integration Studies To Date, Jennifer Decesaro, Kevin Porter Dec 2009

Wind Energy And Power System Operations: A Review Of Wind Integration Studies To Date, Jennifer Decesaro, Kevin Porter

Publications (E)

This paper provides an overview of the challenges associated with wind integration and summarizes the findings of the wind integration studies conducted over the course of the past five years. We begin with an overview of the approximate time frames used in grid operations. We then describe how wind integration studies are conducted, discuss the results on wind integration costs and grid impacts from these grid integration studies, and assess some of the grid planning and operation changes that may be necessary to incorporate higher levels of wind generation. We close with several conclusions.


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


College Of Engineering Senior Design Competition Spring 2009, University Of Nevada, Las Vegas May 2009

College Of Engineering Senior Design Competition Spring 2009, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Using Oceanic-Atmospheric Oscillations For Long Lead Time Streamflow Forecasting, Ajay Kalra, Sajjad Ahmad Mar 2009

Using Oceanic-Atmospheric Oscillations For Long Lead Time Streamflow Forecasting, Ajay Kalra, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

We present a data-driven model, Support Vector Machine (SVM), for long lead time streamflow forecasting using oceanic-atmospheric oscillations. The SVM is based on statistical learning theory that uses a hypothesis space of linear functions based on Kernel approach and has been used to predict a quantity forward in time on the basis of training from past data. The strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problem. The SVM model is applied to three gages, i.e., Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the …


Examination Of The Regional Supply And Demand Balance For Renewable Electricity In The United States Through 2015, Lori Bird, David Hurlbut, Pearl Donohoo, Karlynn Cory, Claire Kreycik Mar 2009

Examination Of The Regional Supply And Demand Balance For Renewable Electricity In The United States Through 2015, Lori Bird, David Hurlbut, Pearl Donohoo, Karlynn Cory, Claire Kreycik

Publications (E)

This report examines the balance between the demand and supply of new renewable electricity in the United States on a regional basis through 2015. It expands on a 2007 NREL study (Swezey et al. 2007) that assessed the supplynational basis. As with the earlier study, this analysis relies on estimates of renewable energy supplies compared to demand for renewable energy generation needed to meet existing state renewable portfolio standard (RPS) policies in 28 states, as well as demand by consumers who voluntarily purchase renewable energy. However, it does not address demand by utilities that may procure cost-effective renewables through an …


Role Of Forward Model In Surface-Wave Studies To Delineate A Buried High-Velocity Layer, Xiaohui Jin, Barbara Luke, Carlos Calderon-Macias Mar 2009

Role Of Forward Model In Surface-Wave Studies To Delineate A Buried High-Velocity Layer, Xiaohui Jin, Barbara Luke, Carlos Calderon-Macias

Civil and Environmental Engineering and Construction Faculty Research

Procedures are tested and compared for processing Rayleigh surface wave data to obtain one-dimensional shear wave velocity profiles for a hypothetical site that contains a buried high-velocity layer (HVL). The main purpose of such an investigation would be to discriminate and characterize the HVL. When target dispersion curves are derived from synthetic time histories, for the most part, the HVL is better identified when profiles are inverted using only the fundamental mode of Rayleigh wave propagation, rather than a more compatible but more complex forward model. The outcomes imply that in practice, a simple forward model might be more successful …


Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule Jan 2009

Yttrium And Hydrogen Superstructure And Correlation Of Lattice Expansion And Proton Conductivity In The Bazr0.9y0.1o2.95 Proton Conductor, A. Braun, A. Ovalle, V. Pomjakushin, A. Cervellino, S. Erat, Wayne C. Stolte, T. Graule

Chemistry and Biochemistry Faculty Research

Bragg reflections in Y-resonant x-ray diffractograms of BaZr0.9Y0.1O2.95 (BZY10) reveal that Y is organized in a superstructure. Comparison with neutron diffraction superstructure reflections in protonated/deuterated BZY10 suggests that both superstructures are linked, and that protons move in the landscape imposed by the Y. The thermal lattice expansion decreases abruptly for protonated BZY10 at T≥648±20 K, coinciding with the onset of lateral proton diffusion and suggesting a correlation of structural changes and proton conductivity. The chemical shift in the Y L1-shell x-ray absorption spectra reveals a reduction from Y3+ toward Y2+ upon …


An H-Adaptive Finite-Element Technique For Constructing 3d Wind Fields, Darrell Pepper, Xiuling Wang Jan 2009

An H-Adaptive Finite-Element Technique For Constructing 3d Wind Fields, Darrell Pepper, Xiuling Wang

Mechanical Engineering Faculty Research

An h-adaptive, mass-consistent finite-element model (FEM) has been developed for constructing 3D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled by an a posteriori error estimator based on the L2 norm. In the h-adaptive FEM algorithm, large element sizes are typically associated with smooth flow regions and small errors; small element sizes are attributed to fast-changing flow regions and large errors. The adaptive procedure employed in this model uses mesh refinement–unrefinement to satisfy error criteria. Results are presented for wind fields using sparse data obtained from two regions …


Interpreting Surface-Wave Data For A Site With Shallow Bedrock, Daniel W. Casto, Barbara Luke, Carlos Calderon-Macias, Ronald Kaufmann Jan 2009

Interpreting Surface-Wave Data For A Site With Shallow Bedrock, Daniel W. Casto, Barbara Luke, Carlos Calderon-Macias, Ronald Kaufmann

Civil and Environmental Engineering and Construction Faculty Research

The inversion of dispersive Rayleigh-wave data has been shown to be successful in providing reliable estimated shear-wave velocities within unconsolidated materials in the near surface. However, in a case where the multi-channel analysis of surface waves method was applied to a site consisting of clay residuum overlying basalt bedrock, inversion for the fundamental-mode Rayleigh wave resulted in shear-wave velocities within the rock that are less than half of expected values. Forward modeling reveals that the fundamental-mode dispersion curve is hardly sensitive to bedrock velocity perturbations over a practical range of wavelengths, leading to poorly constrained solutions. Standard surface-wave methods can …


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Research

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge …