Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

The Migration Of Arsenic And Lead In Surface Sediments At Three Kids Mine Henderson, Nevada, Douglas Brian Sims Dec 1997

The Migration Of Arsenic And Lead In Surface Sediments At Three Kids Mine Henderson, Nevada, Douglas Brian Sims

Publications (WR)

This study focused on the distribution of arsenic and lead in surface sediments at Three Kids Mine in Henderson, Nevada. The mine site encompasses approximately 470 acres of desert and is situated above two developing communities (Lake Las Vegas and Calico Ridge) and the Las Vegas Valley's water source (Lake Mead).

Transport of arsenic and lead appears to have occurred within a limited range in both the eastern and western washes on the eastern and western sides of Three Kids Mine. Concentrations of arsenic range between 20 mg/kg (ppm) and 1130 mg/kg and between 20 mg/kg and 8400 mg/kg for …


Artificial Recharge In The Las Vegas Valley: An Operational History, Michael Johnson, Erin Cole, Kay Brothers, Las Vegas Valley Water District Jun 1997

Artificial Recharge In The Las Vegas Valley: An Operational History, Michael Johnson, Erin Cole, Kay Brothers, Las Vegas Valley Water District

Publications (WR)

Artificially recharging the Las Vegas Valley (Valley) ground-water system with treated Colorado River water is one water resource management option employed by the Las Vegas Valley Water District (District) to help meet future long-term and short-term peak water demands. The District began operation of an artificial ground-water recharge program in 1988 in order to bank water for future use and to slow declining water levels. Artificial recharge occurs in the winter months, typically from October to May, when there is excess capacity in the Southern Nevada Water System (SNWS), currently a 400 Million Gallon per Day (MGD) treatment and transmission …


Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey Apr 1997

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey

Publications (WR)

Las Vegas Wash, a natural wash east of the city of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from three sewage treatment plants to Lake Mead. The Wash provides nearly the only surface water outlet for the entire 2,193 mi2 of Las Vegas Valley. A drainage area of 1,586 mi2 contributes directly to the Wash through surface flow which is channeled to Las Vegas Bay of Lake Mead, while drainage of the remaining 607 mi2 is presumably subsurface and may drain toward Las Vegas Wash.

In the 1930's and 1940's, sewage treatment plants were …


The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation Jan 1997

The Influence Of The Wastewater Drainage From The Las Vegas Valley On The Limnology Of Boulder Basin, Lake Mead, Nevada-Arizona, James F. Labounty, Michael J. Horn, Bureau Of Reclamation

Publications (WR)

Lake Mead, Colorado River, Arizona-Nevada, is one of the most heavily used reservoirs in the western United States, providing abundant recreational opportunities as well as downstream domestic and agricultural water for over 22 million users. Based on average nutrient levels and productivity, Lake Mead is classified as mildly mesotrophic. The interflow of the Colorado River dominates the limnology of much of the 106 km-long reservoir, and may still be identified at Hoover Dam under certain conditions. The lower basin of Lake Mead ending at Hoover Dam is known as Boulder Basin and is near the Las Vegas metropolitan area. Las …