Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Carbon Sequestration By Reforesting Legacy Grasslands On Coal Mining Sites, James F. Fox, J. Elliott Campbell, Peter M. Acton Dec 2020

Carbon Sequestration By Reforesting Legacy Grasslands On Coal Mining Sites, James F. Fox, J. Elliott Campbell, Peter M. Acton

Civil Engineering Faculty Publications

Future carbon management during energy production will rely on carbon capture and sequestration technology and carbon sequestration methods for offsetting non-capturable losses. The present study quantifies carbon sequestration via reforestation using measurements and modeling for recent and legacy surface coal mining grasslands that are re-restored through tree planting. This paper focuses on a case study of legacy coal mining sites in the southern Appalachia the United States. This five million-hectare region has a surface mining footprint of approximately 12% of the land area, and the reclamation method was primarily grassland. The results of the soil carbon sequestration rates for restored …


Soil Net Nitrogen Mineralisation Across Global Grasslands, A. C. Risch, S. Zimmerman, R. Ochoa-Hueso, M. Schütz, B. Frey, J. L. Firn, P. A. Fay, F. Hagedorn, E. T. Borer, E. W. Seabloom, W. S. Harpole, J. M. H. Knops, Rebecca L. Mcculley, A. A. D. Broadbent, C. J. Stevens, M. L. Silveria, P. B. Adler, S. Báez, L. A. Biederman, J. M. Blair Oct 2019

Soil Net Nitrogen Mineralisation Across Global Grasslands, A. C. Risch, S. Zimmerman, R. Ochoa-Hueso, M. Schütz, B. Frey, J. L. Firn, P. A. Fay, F. Hagedorn, E. T. Borer, E. W. Seabloom, W. S. Harpole, J. M. H. Knops, Rebecca L. Mcculley, A. A. D. Broadbent, C. J. Stevens, M. L. Silveria, P. B. Adler, S. Báez, L. A. Biederman, J. M. Blair

Plant and Soil Sciences Faculty Publications

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. …