Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning Framework For Real-World Electronic Health Records Regarding Missingness, Interpretability, And Fairness, Jing Lucas Liu Jan 2023

Machine Learning Framework For Real-World Electronic Health Records Regarding Missingness, Interpretability, And Fairness, Jing Lucas Liu

Theses and Dissertations--Computer Science

Machine learning (ML) and deep learning (DL) techniques have shown promising results in healthcare applications using Electronic Health Records (EHRs) data. However, their adoption in real-world healthcare settings is hindered by three major challenges. Firstly, real-world EHR data typically contains numerous missing values. Secondly, traditional ML/DL models are typically considered black-boxes, whereas interpretability is required for real-world healthcare applications. Finally, differences in data distributions may lead to unfairness and performance disparities, particularly in subpopulations.

This dissertation proposes methods to address missing data, interpretability, and fairness issues. The first work proposes an ensemble prediction framework for EHR data with large missing …


Practical Ai Value Alignment Using Stories, Md Sultan Al Nahian Jan 2023

Practical Ai Value Alignment Using Stories, Md Sultan Al Nahian

Theses and Dissertations--Computer Science

As more machine learning agents interact with humans, it is increasingly a prospect that an agent trained to perform a task optimally - using only a measure of task performance as feedback--can violate societal norms for acceptable behavior or cause harm. Consequently, it becomes necessary to prioritize task performance and ensure that AI actions do not have detrimental effects. Value alignment is a property of intelligent agents, wherein they solely pursue goals and activities that are non-harmful and beneficial to humans. Current approaches to value alignment largely depend on imitation learning or learning from demonstration methods. However, the dynamic nature …


Novel Architectures And Optimization Algorithms For Training Neural Networks And Applications, Vasily I. Zadorozhnyy Jan 2023

Novel Architectures And Optimization Algorithms For Training Neural Networks And Applications, Vasily I. Zadorozhnyy

Theses and Dissertations--Mathematics

The two main areas of Deep Learning are Unsupervised and Supervised Learning. Unsupervised Learning studies a class of data processing problems in which only descriptions of objects are known, without label information. Generative Adversarial Networks (GANs) have become among the most widely used unsupervised neural net models. GAN combines two neural nets, generative and discriminative, that work simultaneously. We introduce a new family of discriminator loss functions that adopts a weighted sum of real and fake parts, which we call adaptive weighted loss functions. Using the gradient information, we can adaptively choose weights to train a discriminator in the direction …


Limitations Of Transformers On Clinical Text Classification, Shang Gao, Mohammed Alawad, Michael Todd Young, John Gounley, Noah Schaefferkoetter, Hong-Jun Yoon, Xiao-Cheng Wu, Eric B. Durbin, Jennifer Doherty, Antoinette Stroup, Linda Coyle, Georgia D. Tourassi Feb 2021

Limitations Of Transformers On Clinical Text Classification, Shang Gao, Mohammed Alawad, Michael Todd Young, John Gounley, Noah Schaefferkoetter, Hong-Jun Yoon, Xiao-Cheng Wu, Eric B. Durbin, Jennifer Doherty, Antoinette Stroup, Linda Coyle, Georgia D. Tourassi

Kentucky Cancer Registry Faculty Publications

Bidirectional Encoder Representations from Transformers (BERT) and BERT-based approaches are the current state-of-the-art in many natural language processing (NLP) tasks; however, their application to document classification on long clinical texts is limited. In this work, we introduce four methods to scale BERT, which by default can only handle input sequences up to approximately 400 words long, to perform document classification on clinical texts several thousand words long. We compare these methods against two much simpler architectures -- a word-level convolutional neural network and a hierarchical self-attention network -- and show that BERT often cannot beat these simpler baselines when classifying …


Multi-Stream Longitudinal Data Analysis Using Deep Learning, Sajjad Fouladvand Jan 2021

Multi-Stream Longitudinal Data Analysis Using Deep Learning, Sajjad Fouladvand

Theses and Dissertations--Computer Science

Longitudinal healthcare data encompasses all tasks where patients information are collected at multiple follow-up times. Analyzing this data is critical in addressing many real world problems in healthcare such as disease prediction and prevention. In this thesis, technical challenges in analyzing longitudinal administrative claims data are addressed and novel deep learning based models are proposed for multi-stream data analysis and disease prediction tasks. These algorithms and frameworks are assessed mainly on substance use disorders prediction tasks and specifically designed to tackled these disorders. Substance use disorder is a public health crisis costing the US an estimated $740 billion annually in …


Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic Jan 2020

Estimating Free-Flow Speed With Lidar And Overhead Imagery, Armin Hadzic

Theses and Dissertations--Computer Science

Understanding free-flow speed is fundamental to transportation engineering in order to improve traffic flow, control, and planning. The free-flow speed of a road segment is the average speed of automobiles unaffected by traffic congestion or delay. Collecting speed data across a state is both expensive and time consuming. Some approaches have been presented to estimate speed using geometric road features for certain types of roads in limited environments. However, estimating speed at state scale for varying landscapes, environments, and road qualities has been relegated to manual engineering and expensive sensor networks. This thesis proposes an automated approach for estimating free-flow …


Unitary And Symmetric Structure In Deep Neural Networks, Kehelwala Dewage Gayan Maduranga Jan 2020

Unitary And Symmetric Structure In Deep Neural Networks, Kehelwala Dewage Gayan Maduranga

Theses and Dissertations--Mathematics

Recurrent neural networks (RNNs) have been successfully used on a wide range of sequential data problems. A well-known difficulty in using RNNs is the vanishing or exploding gradient problem. Recently, there have been several different RNN architectures that try to mitigate this issue by maintaining an orthogonal or unitary recurrent weight matrix. One such architecture is the scaled Cayley orthogonal recurrent neural network (scoRNN), which parameterizes the orthogonal recurrent weight matrix through a scaled Cayley transform. This parametrization contains a diagonal scaling matrix consisting of positive or negative one entries that can not be optimized by gradient descent. Thus the …


Rule Mining And Sequential Pattern Based Predictive Modeling With Emr Data, Orhan Abar Jan 2019

Rule Mining And Sequential Pattern Based Predictive Modeling With Emr Data, Orhan Abar

Theses and Dissertations--Computer Science

Electronic medical record (EMR) data is collected on a daily basis at hospitals and other healthcare facilities to track patients’ health situations including conditions, treatments (medications, procedures), diagnostics (labs) and associated healthcare operations. Besides being useful for individual patient care and hospital operations (e.g., billing, triaging), EMRs can also be exploited for secondary data analyses to glean discriminative patterns that hold across patient cohorts for different phenotypes. These patterns in turn can yield high level insights into disease progression with interventional potential. In this dissertation, using a large scale realistic EMR dataset of over one million patients visiting University of …


Scalable Feature Selection And Extraction With Applications In Kinase Polypharmacology, Derek Jones Jan 2018

Scalable Feature Selection And Extraction With Applications In Kinase Polypharmacology, Derek Jones

Theses and Dissertations--Computer Science

In order to reduce the time associated with and the costs of drug discovery, machine learning is being used to automate much of the work in this process. However the size and complex nature of molecular data makes the application of machine learning especially challenging. Much work must go into the process of engineering features that are then used to train machine learning models, costing considerable amounts of time and requiring the knowledge of domain experts to be most effective. The purpose of this work is to demonstrate data driven approaches to perform the feature selection and extraction steps in …