Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

The Soda Lakes Of Nhecolândia: A Conservation Opportunity For The Pantanal Wetlands, Renato L. Guerreiro, Ivan Bergier, Michael M. Mcglue, Lucas V. Warren, Urbano Gomes Pinto De Abreu, Jônatas Abrahão, Mario L. Assine Jan 2019

The Soda Lakes Of Nhecolândia: A Conservation Opportunity For The Pantanal Wetlands, Renato L. Guerreiro, Ivan Bergier, Michael M. Mcglue, Lucas V. Warren, Urbano Gomes Pinto De Abreu, Jônatas Abrahão, Mario L. Assine

Earth and Environmental Sciences Faculty Publications

The Pantanal is the most conserved biome in Brazil and among the last wild refuges in South America, but intensification of agriculture and other land use changes present challenges for protecting this exceptionally biodiverse wetland ecosystem. Recent studies have shed new light on the origins and biogeochemistry of a suite of >600 small saline-alkaline lakes in Nhecolândia, a floodplain setting located south of the Taquari River in south-central Pantanal. These soda lakes form a unique aquatic environment in Pantanal and nascent research on their geomicrobiology suggests that their biota may be analogous to early life, and extreme life in Earth's …


Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley Jan 2018

Local Loss And Spatial Homogenization Of Plant Diversity Reduce Ecosystem Multifunctionality, Yann Hautier, Forest Isbell, Elizabeth T. Borer, Eric W. Seabloom, W. Stanley Harpole, Eric M. Lind, Andrew S. Macdougall, Carly J. Stevens, Peter B. Adler, Juan Alberti, Jonathan D. Bakker, Lars A. Brudvig, Yvonne M. Buckley, Marc Cadotte, Maria C. Caldeira, Enrique J. Chaneton, Chengjin Chu, Pedro Daleo, Christopher R. Dickman, John M. Dwyer, Anu Eskelinen, Philip A Fay, Jennifer Firn, Nicole Hagenah, Helmut Hillebrand, Oscar Iribarne, Kevin P. Kirkman, Johannes M. H. Knops, Kimberly J. La Pierre, Rebecca L. Mcculley

Plant and Soil Sciences Faculty Publications

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected …