Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Mathematics Faculty Publications

Series

2021

Yeast infections

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Mathematical Modeling Of The Candida Albicans Yeast To Hyphal Transition Reveals Novel Control Strategies, David J. Wooten, Jorge Gómez Tejeda Zañudo, David Murrugarra, Austin M. Perry, Anna Dongari-Bagtzoglou, Reinhard Laubenbacher, Clarissa J. Nobile, Réka Albert Mar 2021

Mathematical Modeling Of The Candida Albicans Yeast To Hyphal Transition Reveals Novel Control Strategies, David J. Wooten, Jorge Gómez Tejeda Zañudo, David Murrugarra, Austin M. Perry, Anna Dongari-Bagtzoglou, Reinhard Laubenbacher, Clarissa J. Nobile, Réka Albert

Mathematics Faculty Publications

Candida albicans, an opportunistic fungal pathogen, is a significant cause of human infections, particularly in immunocompromised individuals. Phenotypic plasticity between two morphological phenotypes, yeast and hyphae, is a key mechanism by which C. albicans can thrive in many microenvironments and cause disease in the host. Understanding the decision points and key driver genes controlling this important transition and how these genes respond to different environmental signals is critical to understanding how C. albicans causes infections in the host. Here we build and analyze a Boolean dynamical model of the C. albicans yeast to hyphal transition, integrating …