Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Chemistry Faculty Publications

Oxidative Stress

Life Sciences

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Disruption Of The Hippocampal And Hypothalamic Blood-Brain Barrier In A Diet-Induced Obese Model Of Type Ii Diabetes: Prevention And Treatment By The Mitochondrial Carbonic Anhydrase Inhibitor, Topiramate, Therese S. Salameh, William G. Mortell, Aric F. Logsdon, D. Allan Butterfield, William A. Banks Jan 2019

Disruption Of The Hippocampal And Hypothalamic Blood-Brain Barrier In A Diet-Induced Obese Model Of Type Ii Diabetes: Prevention And Treatment By The Mitochondrial Carbonic Anhydrase Inhibitor, Topiramate, Therese S. Salameh, William G. Mortell, Aric F. Logsdon, D. Allan Butterfield, William A. Banks

Chemistry Faculty Publications

Background: Type II diabetes is a vascular risk factor for cognitive impairment and increased risk of dementia. Disruption of the blood–retinal barrier (BRB) and blood–brain barrier (BBB) are hallmarks of subsequent retinal edema and central nervous system dysfunction. However, the mechanisms by which diet or metabolic syndrome induces dysfunction are not understood. A proposed mechanism is an increase in reactive oxygen species (ROS) and oxidative stress. Inhibition of mitochondrial carbonic anhydrase (mCA) decreases ROS and oxidative stress. In this study, topiramate, a mCA inhibitor, was examined for its ability to protect the BRB and BBB in diet-induced obese type II …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …