Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Chemistry Faculty Publications

Discipline
Keyword
Publication Year

Articles 1 - 30 of 182

Full-Text Articles in Physical Sciences and Mathematics

Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh Feb 2022

Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh

Chemistry Faculty Publications

Examining the concentration and types of airborne bacteria in waste paper and cardboard sorting plants (WPCSP) is an urgent matter to inform policy makers about the health impacts on exposed workers. Herein, we collected 20 samples at 9 points of a WPCSP every 6 winter days, and found that the most abundant airborne bacteria were positively and negatively correlated to relative humidity and temperature, respectively. The most abundant airborne bacteria (in units of CFU m−3) were: Staphylococcus sp. (72.4) > Micrococcus sp. (52.2) > Bacillus sp. (30.3) > Enterococcus sp. (24.0) > Serratia marcescens (20.1) > E. coli (19.1) > Pseudomonas sp. (16.0) > Nocardia …


Metabolic Features Of Brain Function With Relevance To Clinical Features Of Alzheimer And Parkinson Diseases, David Allan Butterfield, Maria Favia, Iolanda Spera, Annalisa Campanella, Martina Lanza, Alessandra Castegna Jan 2022

Metabolic Features Of Brain Function With Relevance To Clinical Features Of Alzheimer And Parkinson Diseases, David Allan Butterfield, Maria Favia, Iolanda Spera, Annalisa Campanella, Martina Lanza, Alessandra Castegna

Chemistry Faculty Publications

Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.


Aberrant Crosstalk Between Insulin Signaling And Mtor In Young Down Syndrome Individuals Revealed By Neuronal-Derived Extracellular Vesicles, Marzia Perluigi, Anna Picca, Elita Montanari, Riccardo Calvani, Federico Marini, Roberto Matassa, Antonella Tramutola, Alberto Villani, Giuseppe Familiari, Fabio Di Domenico, D. Allan Butterfield, Kenneth J. Oh, Emanuele Marzetti, Diletta Valentini, Eugenio Barone Nov 2021

Aberrant Crosstalk Between Insulin Signaling And Mtor In Young Down Syndrome Individuals Revealed By Neuronal-Derived Extracellular Vesicles, Marzia Perluigi, Anna Picca, Elita Montanari, Riccardo Calvani, Federico Marini, Roberto Matassa, Antonella Tramutola, Alberto Villani, Giuseppe Familiari, Fabio Di Domenico, D. Allan Butterfield, Kenneth J. Oh, Emanuele Marzetti, Diletta Valentini, Eugenio Barone

Chemistry Faculty Publications

INTRODUCTION: Intellectual disability, accelerated aging, and early-onset Alzheimer-like neurodegeneration are key brain pathological features of Down syndrome (DS). Although growing research aims at the identification of molecular pathways underlying the aging trajectory of DS population, data on infants and adolescents with DS are missing.

METHODS: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy donors (HDs, n = 17) and DS children (n = 18) from 2 to 17 years of age and nEV content was interrogated for markers of insulin/mTOR pathways.

RESULTS: nEVs isolated from DS children were characterized by a significant increase in pIRS1Ser636, a marker of …


Premade Nanoparticle Films For The Synthesis Of Vertically Aligned Carbon Nanotubes, Abdul Hoque, Ahamed Ullah, Beth S. Guiton, Noe T. Alvarez Nov 2021

Premade Nanoparticle Films For The Synthesis Of Vertically Aligned Carbon Nanotubes, Abdul Hoque, Ahamed Ullah, Beth S. Guiton, Noe T. Alvarez

Chemistry Faculty Publications

Carbon nanotubes (CNTs) offer unique properties that have the potential to address multiple issues in industry and material sciences. Although many synthesis methods have been developed, it remains difficult to control CNT characteristics. Here, with the goal of achieving such control, we report a bottom-up process for CNT synthesis in which monolayers of premade aluminum oxide (Al2O3) and iron oxide (Fe3O4) nanoparticles were anchored on a flat silicon oxide (SiO2) substrate. The nanoparticle dispersion and monolayer assembly of the oleic-acid-stabilized Al2O3 nanoparticles were achieved using 11-phosphonoundecanoic acid …


Biotinylation As A Tool To Enhance The Uptake Of Small Molecules In Gram-Negative Bacteria, Ankit Pandeya, Ling Yang, Olaniyi Alegun, Chamikara Karunasena, Chad Risko, Zhenyu Li, Yinan Wei Nov 2021

Biotinylation As A Tool To Enhance The Uptake Of Small Molecules In Gram-Negative Bacteria, Ankit Pandeya, Ling Yang, Olaniyi Alegun, Chamikara Karunasena, Chad Risko, Zhenyu Li, Yinan Wei

Chemistry Faculty Publications

Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the “Trojan horse strategy”. In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule …


Aqueous Photochemistry Of 2-Oxocarboxylic Acids: Evidence, Mechanisms, And Atmospheric Impact, Marcelo I. Guzman, Alexis J. Eugene Aug 2021

Aqueous Photochemistry Of 2-Oxocarboxylic Acids: Evidence, Mechanisms, And Atmospheric Impact, Marcelo I. Guzman, Alexis J. Eugene

Chemistry Faculty Publications

Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, …


Insight Into The Acrab-Tolc Complex Assembly Process Learned From Competition Studies, Prasangi Rajapaksha, Isoiza Ojo, Ling Yang, Ankit Pandeya, Thilini Abeywansha, Yinan Wei Jul 2021

Insight Into The Acrab-Tolc Complex Assembly Process Learned From Competition Studies, Prasangi Rajapaksha, Isoiza Ojo, Ling Yang, Ankit Pandeya, Thilini Abeywansha, Yinan Wei

Chemistry Faculty Publications

The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called “dominant negative” effect. Being one of …


Donnan Potential Across The Outer Membrane Of Gram-Negative Bacteria And Its Effect On The Permeability Of Antibiotics, Olaniyi Alegun, Ankit Pandeya, Jian Cui, Isoiza Ojo, Yinan Wei Jun 2021

Donnan Potential Across The Outer Membrane Of Gram-Negative Bacteria And Its Effect On The Permeability Of Antibiotics, Olaniyi Alegun, Ankit Pandeya, Jian Cui, Isoiza Ojo, Yinan Wei

Chemistry Faculty Publications

The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans …


Synthesis And Crystal Structures Of 3,6-Di­Hy­Droxy­Picolinic Acid And Its Labile Inter­Mediate Dipotassium 3-Hy­Dr­Oxy-6-(Sulfonato­­Oxy)Pyridine-2-Carboxyl­Ate Monohydrate, Edward J. Behrman, Sean R. Parkin May 2021

Synthesis And Crystal Structures Of 3,6-Di­Hy­Droxy­Picolinic Acid And Its Labile Inter­Mediate Dipotassium 3-Hy­Dr­Oxy-6-(Sulfonato­­Oxy)Pyridine-2-Carboxyl­Ate Monohydrate, Edward J. Behrman, Sean R. Parkin

Chemistry Faculty Publications

A simplified two-step synthesis of 3,6-di­hydroxy­picolinic acid (3-hy­droxy-6-oxo-1,6-di­hydro­pyridine-2-carb­oxy­lic acid), C6H5NO4 (II), an inter­mediate in the metabolism of picolinic acid, is described. The crystal structure of II, along with that of a labile inter­mediate, dipotassium 3-hy­droxy-6-(sulfonato­oxy)pyridine-2-carboxyl­ate monohydrate, 2K+·C6H3NO7S2−·H2O (I), is also described. Compound I comprises a pyridine ring with carboxyl­ate, hydroxyl (connected by an intra­molecular O—H⋯O hydrogen bond), and sulfate groups at the 2-, 3-, and 6-positions, respectively, along with two potassium cations for charge balance and one water …


Suppressing Bias Stress Degradation In High Performance Solution Processed Organic Transistors Operating In Air, Hamna F. Iqbal, Qianxiang Ai, Karl J. Thorley, Hu Chen, Iain Mcculloch, Chad Risko, John E. Anthony, Oana D. Jurchescu Apr 2021

Suppressing Bias Stress Degradation In High Performance Solution Processed Organic Transistors Operating In Air, Hamna F. Iqbal, Qianxiang Ai, Karl J. Thorley, Hu Chen, Iain Mcculloch, Chad Risko, John E. Anthony, Oana D. Jurchescu

Chemistry Faculty Publications

Solution processed organic field effect transistors can become ubiquitous in flexible optoelectronics. While progress in material and device design has been astonishing, low environmental and operational stabilities remain longstanding problems obstructing their immediate deployment in real world applications. Here, we introduce a strategy to identify the most probable and severe degradation pathways in organic transistors and then implement a method to eliminate the main sources of instabilities. Real time monitoring of the energetic distribution and transformation of electronic trap states during device operation, in conjunction with simulations, revealed the nature of traps responsible for performance degradation. With this information, we …


Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni Apr 2021

Direct Detection Of 5-Mev Protons By Flexible Organic Thin-Film Devices, Ilaria Fratelli, Andrea Ciavatti, Enrico Zanazzi, Laura Basiricò, Massimo Chiari, Laura Fabbri, John E. Anthony, Alberto Quaranta, Beatrice Fraboni

Chemistry Faculty Publications

The direct detection of 5-MeV protons by flexible organic detectors based on thin films is here demonstrated. The organic devices act as a solid-state detector, in which the energy released by the protons within the active layer of the sensor is converted into an electrical current. These sensors can quantitatively and reliably measure the dose of protons impinging on the sensor both in real time and in integration mode. This study shows how to detect and exploit the energy absorbed both by the organic semiconducting layer and by the plastic substrate, allowing to extrapolate information on the present and past …


Modes Of Transmission Of Severe Acute Respiratory Syndrome-Coronavirus-2 (Sars-Cov-2) And Factors Influencing On The Airborne Transmission: A Review, Mahdieh Delikhoon, Marcelo I. Guzman, Ramin Nabizadeh, Abbas Norouzian Baghani Jan 2021

Modes Of Transmission Of Severe Acute Respiratory Syndrome-Coronavirus-2 (Sars-Cov-2) And Factors Influencing On The Airborne Transmission: A Review, Mahdieh Delikhoon, Marcelo I. Guzman, Ramin Nabizadeh, Abbas Norouzian Baghani

Chemistry Faculty Publications

The multiple modes of SARS-CoV-2 transmission including airborne, droplet, contact, and fecal–oral transmissions that cause coronavirus disease 2019 (COVID-19) contribute to a public threat to the lives of people worldwide. Herein, different databases are reviewed to evaluate modes of transmission of SARS-CoV-2 and study the effects of negative pressure ventilation, air conditioning system, and related protection approaches of this virus. Droplet transmission was commonly reported to occur in particles with diameter >5 µm that can quickly settle gravitationally on surfaces (1–2 m). Instead, fine and ultrafine particles (airborne transmission) can stay suspended for an extended period of time (≥2 h) …


N-Type Charge Transport In Heavily P-Doped Polymers, Zhiming Liang, Hyun Ho Choi, Xuyi Luo, Tuo Liu, Ashkan Abtahi, Uma Shantini Ramasamy, J. Andrew Hitron, Kyle N. Baustert, Jacob L. Hempel, Alex M. Boehm, Armin Ansary, Douglas R. Strachan, Jianguo Mei, Chad Risko, Vitaly Podzorov, Kenneth R. Graham Jan 2021

N-Type Charge Transport In Heavily P-Doped Polymers, Zhiming Liang, Hyun Ho Choi, Xuyi Luo, Tuo Liu, Ashkan Abtahi, Uma Shantini Ramasamy, J. Andrew Hitron, Kyle N. Baustert, Jacob L. Hempel, Alex M. Boehm, Armin Ansary, Douglas R. Strachan, Jianguo Mei, Chad Risko, Vitaly Podzorov, Kenneth R. Graham

Chemistry Faculty Publications

It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that …


Dark Iron-Catalyzed Reactions In Acidic And Viscous Aerosol Systems Efficiently Form Secondary Brown Carbon, Hind A. Al-Abadleh, Md Sohel Rana, Wisam Mohammed, Marcelo I. Guzman Dec 2020

Dark Iron-Catalyzed Reactions In Acidic And Viscous Aerosol Systems Efficiently Form Secondary Brown Carbon, Hind A. Al-Abadleh, Md Sohel Rana, Wisam Mohammed, Marcelo I. Guzman

Chemistry Faculty Publications

Iron-driven secondary brown carbon formation reactions from water-soluble organics in cloud droplets and aerosols create insoluble and soluble products of emerging atmospheric importance. This work shows, for the first time, results on dark iron-catalyzed polymerization of catechol forming insoluble black polycatechol particles and colored water-soluble oligomers under conditions characteristic of viscous multicomponent aerosol systems with relatively high ionic strength (I = 1–12 m) and acidic pH (∼2). These systems contain ammonium sulfate (AS)/nitrate (AN) and C3–C5 dicarboxylic acids, namely, malonic, malic, succinic, and glutaric acids. Using dynamic light scattering (DLS) and ultra high pressure liquid chromatography-mass spectrometry (UHPLC-MS), …


An Overview Of The Effect Of Bioaerosol Size In Coronavirus Disease 2019 Transmission, Marcelo I. Guzman Dec 2020

An Overview Of The Effect Of Bioaerosol Size In Coronavirus Disease 2019 Transmission, Marcelo I. Guzman

Chemistry Faculty Publications

The fast spread of coronavirus disease 2019 (COVID-19) constitutes a worldwide challenge to the public health, educational and trade systems, affecting the overall well-being of human societies. The high transmission and mortality rates of this virus, and the unavailability of a vaccine or treatment, resulted in the decision of multiple governments to enact measures of social distancing. Such measures can reduce the exposure to bioaerosols, which can result in pathogen deposition in the respiratory tract of the host causing disease and an immunological response. Thus, it is important to consider the validity of the proposal for keeping a distance of …


Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman Dec 2020

Application Of A Small Unmanned Aerial System To Measure Ammonia Emissions From A Pilot Amine-Co2 Capture System, Travis J. Schuyler, Bradley Irvin, Keemia Abad, Jesse G. Thompson, Kunlei Liu, Marcelo I. Guzman

Chemistry Faculty Publications

The quantification of atmospheric gases with small unmanned aerial systems (sUAS) is expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the impact of technologies. In this work, a calibrated sUAS is used to quantify the emissions of ammonia (NH3) gas from the exit stack a 0.1 MWth pilot-scale carbon capture system (CCS) employing a 5 M monoethanolamine (MEA) solvent to scrub CO2 from coal combustion flue gas. A comparison of the results using the sUAS against the ion chromatography technique with the EPA CTM-027 method for the standard emission sampling of NH3 …


Synthesis, Characterization, And Antiproliferative Activity Of Novel Chiral [Quinoxp*Aucl2]+ Complexes, Adedamola S. Arojojoye, R. Tyler Mertens, Samuel Ofori, Sean R. Parkin, Samuel G. Awuah Dec 2020

Synthesis, Characterization, And Antiproliferative Activity Of Novel Chiral [Quinoxp*Aucl2]+ Complexes, Adedamola S. Arojojoye, R. Tyler Mertens, Samuel Ofori, Sean R. Parkin, Samuel G. Awuah

Chemistry Faculty Publications

Herein is reported the synthesis of two Au(III) complexes bearing the (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (R,R-QuinoxP*) or (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxaline (S,S-QuinoxP*) ligands. By reacting two stoichiometric equivalents of HAuCl4.3H2O to one equivalent of the corresponding QuinoxP* ligand, (R,R)-(–)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (1) and (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) were formed, respectively, in moderate yields. The structure of (S,S)-(+)-2,3-Bis(tert-butylmethylphosphino)quinoxalinedichlorogold(III) tetrachloroaurates(III) (2) was further confirmed by X-ray crystallography. The antiproliferative activities of the two compounds were evaluated in a panel of cell lines and exhibited promising results comparable to auranofin and cisplatin with …


Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …


Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman Oct 2020

Oxidation Of Phenolic Aldehydes By Ozone And Hydroxyl Radicals At The Air-Water Interface, Md Sohel Rana, Marcelo I. Guzman

Chemistry Faculty Publications

Biomass burning releases highly reactive methoxyphenols into the atmosphere, which can undergo heterogeneous oxidation and act as precursors for secondary organic aerosol (SOA) formation. Understanding the reactivity of such methoxyphenols at the air–water interface is a matter of major atmospheric interest. Online electrospray ionization mass spectrometry (OESI-MS) is used here to study the oxidation of two methoxyphenols among three phenolic aldehydes, 4-hydroxybenzaldehyde, vanillin, and syringaldehyde, on the surface of water. The OESI-MS results together with cyclic voltammetry measurements at variable pH are integrated into a mechanism describing the heterogeneous oxidative processing of methoxyphenols by gaseous ozone (O3) and …


Mitochondrial Oxidative And Nitrosative Stress And Alzheimer Disease, D. Allan Butterfield, Debra Boyd-Kimball Sep 2020

Mitochondrial Oxidative And Nitrosative Stress And Alzheimer Disease, D. Allan Butterfield, Debra Boyd-Kimball

Chemistry Faculty Publications

Oxidative and nitrosative stress are widely recognized as critical factors in the pathogenesis and progression of Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI). A major source of free radicals that lead to oxidative and nitrosative damage is mitochondria. This review paper discusses oxidative and nitrosative stress and markers thereof in the brain, along with redox proteomics, which are techniques that have been pioneered in the Butterfield laboratory. Selected biological alterations in—and oxidative and nitrosative modifications of—mitochondria in AD and MCI and systems of relevance thereof also are presented. The review article concludes with a section …


The Bach1/Nrf2 Axis In Brain In Down Syndrome And Transition To Alzheimer Disease-Like Neuropathology And Dementia, Marzia Perluigi, Antonella Tramutola, Sara Pagnotta, Eugenio Barone, D. Allan Butterfield Aug 2020

The Bach1/Nrf2 Axis In Brain In Down Syndrome And Transition To Alzheimer Disease-Like Neuropathology And Dementia, Marzia Perluigi, Antonella Tramutola, Sara Pagnotta, Eugenio Barone, D. Allan Butterfield

Chemistry Faculty Publications

Down syndrome (DS) is the most common genetic cause of intellectual disability that is associated with an increased risk to develop early-onset Alzheimer-like dementia (AD). The brain neuropathological features include alteration of redox homeostasis, mitochondrial deficits, inflammation, accumulation of both amyloid beta-peptide oligomers and senile plaques, as well as aggregated hyperphosphorylated tau protein-containing neurofibrillary tangles, among others. It is worth mentioning that some of the triplicated genes encoded are likely to cause increased oxidative stress (OS) conditions that are also associated with reduced cellular responses. Published studies from our laboratories propose that increased oxidative damage occurs early in life in …


Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana Jul 2020

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana

Chemistry Faculty Publications

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA …


Conversion Between Triplet Pair States Is Controlled By Molecular Coupling In Pentadithiophene Thin Films, Natalie A. Pace, Brandon K. Rugg, Christopher H. Chang, Obadiah G. Reid, Karl J. Thorley, Sean Parkin, John E. Anthony, Justin C. Johnson Jun 2020

Conversion Between Triplet Pair States Is Controlled By Molecular Coupling In Pentadithiophene Thin Films, Natalie A. Pace, Brandon K. Rugg, Christopher H. Chang, Obadiah G. Reid, Karl J. Thorley, Sean Parkin, John E. Anthony, Justin C. Johnson

Chemistry Faculty Publications

In singlet fission (SF) the initially formed correlated triplet pair state, 1(TT), may evolve toward independent triplet excitons or higher spin states of the (TT) species. The latter result is often considered undesirable from a light harvesting perspective but may be attractive for quantum information sciences (QIS) applications, as the final exciton pair can be spin-entangled and magnetically active with relatively long room temperature decoherence times. In this study we use ultrafast transient absorption (TA) and time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy to monitor SF and triplet pair evolution in a series of alkyl silyl-functionalized pentadithiophene (PDT) thin films …


Mild Deprotection Of The N-Tert-Butyloxycarbonyl (N-Boc) Group Using Oxalyl Chloride, Nathaniel George, Samuel Ofori, Sean R. Parkin, Samuel G. Awuah Jan 2020

Mild Deprotection Of The N-Tert-Butyloxycarbonyl (N-Boc) Group Using Oxalyl Chloride, Nathaniel George, Samuel Ofori, Sean R. Parkin, Samuel G. Awuah

Chemistry Faculty Publications

We report a mild method for the selective deprotection of the N-Boc group from a structurally diverse set of compounds, encompassing aliphatic, aromatic, and heterocyclic substrates by using oxalyl chloride in methanol. The reactions take place under room temperature conditions for 1–4 h with yields up to 90%. This mild procedure was applied to a hybrid, medicinally active compound FC1, which is a novel dual inhibitor of IDO1 and DNA Pol gamma. A broader mechanism involving the electrophilic character of oxalyl chloride is postulated for this deprotection strategy.


Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony Oct 2019

Computationally Aided Design Of A High-Performance Organic Semiconductor: The Development Of A Universal Crystal Engineering Core, Anthony J. Petty Ii, Qianxiang Ai, Jeni C. Sorli, Hamna F. Haneef, Geoffrey E. Purdum, Alex M. Boehm, Devin B. Granger, Kaichen Gu, Carla Patricia Lacerda Rubinger, Sean R. Parkin, Kenneth R. Graham, Oana D. Jurchescu, Yueh-Lin Loo, Chad Risko, John E. Anthony

Chemistry Faculty Publications

Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1.


Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman Sep 2019

Production Of Singlet Oxygen (1O2) During The Photochemistry Of Aqueous Pyruvic Acid: The Effects Of Ph And Photon Flux Under Steady-State O2(Aq) Concentration, Alexis J. Eugene, Marcelo I. Guzman

Chemistry Faculty Publications

The photochemistry of pyruvic acid (PA) in aqueous atmospheric particles contributes to the production of secondary organic aerosols. This work investigates the fate of ketyl and acetyl radicals produced during the photolysis (λ ≥ 305 nm) of 5-100 mM PA under steady state [O2(aq)] = 260 μM (1.0 ≤ pH ≤ 4.5) for photon fluxes between 1 and 10 suns. The radicals diffuse quickly into the water/air interface of microbubbles and react with dissolved O2 to produce singlet oxygen (1O2*). Furfuryl alcohol is used to trap and bracket the steady-state production of …


Monitoring Tropospheric Gases With Small Unmanned Aerial Systems (Suas) During The Second Cloudmap Flight Campaign, Travis J. Schuyler, Sean C. C. Bailey, Marcelo I. Guzman Aug 2019

Monitoring Tropospheric Gases With Small Unmanned Aerial Systems (Suas) During The Second Cloudmap Flight Campaign, Travis J. Schuyler, Sean C. C. Bailey, Marcelo I. Guzman

Chemistry Faculty Publications

Small unmanned aerial systems (sUAS) are a promising technology for atmospheric monitoring of trace atmospheric gases. While sUAS can be navigated to provide information with higher spatiotemporal resolution than tethered balloons, they can also bridge the gap between the regions of the atmospheric boundary layer (ABL) sampled by ground stations and manned aircraft. Additionally, sUAS can be effectively employed in the petroleum industry, e.g., to constrain leaking regions of hydrocarbons from long gasoducts. Herein, sUAS are demonstrated to be a valuable technology for studying the concentration of important trace tropospheric gases in the ABL. The successful detection and quantification of …


Crystal Structure Of Zymonic Acid And A Redetermination Of Its Precursor, Pyruvic Acid, Dominik Heger, Alexis J. Eugene, Sean R. Parkin, Marcelo I. Guzman Jun 2019

Crystal Structure Of Zymonic Acid And A Redetermination Of Its Precursor, Pyruvic Acid, Dominik Heger, Alexis J. Eugene, Sean R. Parkin, Marcelo I. Guzman

Chemistry Faculty Publications

The structure of zymonic acid (systematic name: 4-hy­droxy-2-methyl-5-oxo-2,5-di­hydro­furan-2-carb­oxy­lic acid), C6H6O5, which had previously eluded crystallographic determination, is presented here for the first time. It forms by intra­molecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxo­propanoic acid), C3H4O3, at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B33, 210–212]. In zymonic acid, the hy­droxy­lactone ring …


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9, …


Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer May 2019

Intercomparison Of Small Unmanned Aircraft System (Suas) Measurements For Atmospheric Science During The Lapse-Rate Campaign, Lindsay Barbieri, Stephan T. Kral, Sean C. C. Bailey, Amy E. Frazier, Jamey D. Jacob, Joachim Reuder, David Brus, Phillip B. Chilson, Christopher Crick, Carrick Detweiler, Abhiram Doddi, Jack Elston, Hosein Foroutan, Javier González-Rocha, Brian R. Greene, Marcelo I. Guzman, Adam L. Houston, Ashraful Islam, Osku Kemppinen, Dale Lawrence, Elizabeth A. Pillar-Little, Shane D. Ross, Michael P. Sama, David G. Schmale Iii, Travis J. Schuyler, Ajay Shankar, Suzanne W. Smith, Sean Waugh, Cory Dixon, Steve Borenstein, Gijs De Boer

Chemistry Faculty Publications

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and …