Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Physical Sciences and Mathematics

Magnetic Spin Transport Coils For The N2edm Experiment, David C. Bowles Jan 2024

Magnetic Spin Transport Coils For The N2edm Experiment, David C. Bowles

Theses and Dissertations--Physics and Astronomy

The n2EDM experiment is being construct at Paul Scherrer Institute to measure the electric dipole moment of the neutron (nEDM), in a search for new physics which could help explain the baryon asymmetry of the universe. To reach the experimental sensitivity goal of $d_n \sim 10^{-27}$, over an order of magnitude improvement from the current world limit, a spin polarization transfer efficiency of 99\% for ultracold neutrons entering or exiting the precession chamber is required, placing a stringent requirement on the adiabaticity of the magnetic field taper in the neutron guide system. The spin transport fields transition from 5~T (longitudinal) …


Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington Jan 2023

Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington

Theses and Dissertations--Physics and Astronomy

Charge-Parity (CP) violation is one of Sakharov's three conditions which serve as guidelines for the generation of a matter-antimatter asymmetry in the early universe. The Standard Model (SM) of particle physics contains sources of CP violation which can be used to predict the baryon asymmetry. The observed baryon asymmetry is not predicted from SM calculations, meaning there must be additional sources of CP violation beyond the Standard Model (BSM) to generate the asymmetry. Permanent electric dipole moments (EDMs), which are inherently parity- and time reversal- violating, present a promising avenue for the discovery of new sources of CP violation to …


The Design Of Primary Holding Magnet For The Lanl Neutron Electric Dipole Moment Experiment, Piya Amara Palamure Jan 2023

The Design Of Primary Holding Magnet For The Lanl Neutron Electric Dipole Moment Experiment, Piya Amara Palamure

Theses and Dissertations--Physics and Astronomy

The measurement of the permanent electric dipole moment of the neutron (nEDM) plays a significant role in searching for sources of beyond standard model CP violating physics. The goal of the Los Alamos National Laboratory (LANL) nEDM experiment is to push the upper limit of the nEDM to < 3 × 10−27 e·cm (68 % CL). A highly uniform magnetic field is key to achieving this sensitivity for the nEDM measurement by reducing the systematic uncertainties associated with the magnetic field non-uniformity. The B0 coil was designed to achieve a field uniformity of < 0.3 nT·m−1 at a nominal holding field of 1 µT. This document will outline a novel technique employed in the construction of the B0 coil using printed circuit boards (PCBs) and will present preliminary field maps obtained with the B0 coil housed in a magnetically shielded room (MSR) at LANL.

As Ultra Cold Neutrons (UCNs) move from the source to the measurement cells, the UCNs experience a large magnetic field gradient in the region between the layers of the MSR. This large gradient would otherwise cause depolarization of the UCNs. To mitigate this, a double cos θ coil will serve as the …


An Energy-Integrated Analysis For Measuring The Anomalous Precession Frequency For The Muon G − 2 Experiment At Fermilab, Laura Kelton Jan 2022

An Energy-Integrated Analysis For Measuring The Anomalous Precession Frequency For The Muon G − 2 Experiment At Fermilab, Laura Kelton

Theses and Dissertations--Physics and Astronomy

In the search for physics beyond the Standard Model, the Muon g − 2 Experiment at Fermilab (E989) will make the most precise measurement of the anomalous magnetic moment of the muon, aμ. Improvements in precision come from both increased statistics and new techniques to significantly reduce previous systematic uncertainties. The muon aμ is determined by extracting both the anomalous spin precession frequency, ωa, and the average magnetic field sampled by the muons, B. Traditionally an energy threshold analysis method which requires reconstruction of decay positrons from the muon decay, μ+ → e+ …


Cryogenic Magnetic Field Monitoring System In The Sns Neutron Edm Experiment, Umit Hasan Coskun Jan 2022

Cryogenic Magnetic Field Monitoring System In The Sns Neutron Edm Experiment, Umit Hasan Coskun

Theses and Dissertations--Physics and Astronomy

A permanent neutron electric dipole moment (nEDM), dn, would violate charge-conjugation and parity (CP) symmetry. The neutron electric dipole moment currently has a global limit of dn < 1.8 x 10-26 e cm (90% CL). This limit is intended to be improved by two orders of magnitude by the nEDM experiment at the Spallation Neutron Source (SNS nEDM), dn ~ 10-28 e cm. The magnetic field non-uniformities within the experimental region must be precisely monitored and managed in order to suppress systematic effects in the experiment caused by magnetic field gradients. The estimation of magnetic field components within …


Extraction Of Deep Inelastic Cross Sections Using A 10.4 Gev Electron Beam And A Polarized Helium-3 Target, Murchhana Roy Jan 2022

Extraction Of Deep Inelastic Cross Sections Using A 10.4 Gev Electron Beam And A Polarized Helium-3 Target, Murchhana Roy

Theses and Dissertations--Physics and Astronomy

Experiment E12-06-121 at Jefferson Lab aims to do a precision measurement of the neutron spin structure function g2 using inclusive inelastic scattering of electrons over a large kinematic range of x and Q2. The third moment of the linear combination of the spin structure functions g1 and g2, d2, is one of the cleanest higher twist observables and contains information on quark-gluon correlations. It is connected to the "color polarizability" or "color Lorentz force" of the nucleon. The experimental data taking was successfully conducted in Hall C using a longitudinally polarized electron …


High Performance Data Acquisition And Analysis Routines For The Nab Experiment, David Mathews Jan 2022

High Performance Data Acquisition And Analysis Routines For The Nab Experiment, David Mathews

Theses and Dissertations--Physics and Astronomy

Probes of the Standard Model of particle physics are pushing further and further into the so-called “precision frontier”. In order to reach the precision goals of these experiments, a combination of elegant experimental design and robust data acquisition and analysis is required. Two experiments that embody this philosophy are the Nab and Calcium-45 experiments. These experiments are probing the understanding of the weak interaction by examining the beta decay of the free neutron and Calcium-45 respectively. They both aim to measure correlation parameters in the neutron beta decay alphabet, a and b. The parameter a, the electron-neutrino correlation coefficient, is …


Energy Integrated Ratio Analysis Of The Anomalous Precession Frequency In The Fermilab Muon G-2 Experiment, Ritwika Chakraborty Jan 2022

Energy Integrated Ratio Analysis Of The Anomalous Precession Frequency In The Fermilab Muon G-2 Experiment, Ritwika Chakraborty

Theses and Dissertations--Physics and Astronomy

The muon’s anomalous magnetic moment, aμ, provides a unique way for probing physics beyond the standard model experimentally as it gathers contributions from all the known and unknown forces and particles in nature. The theoretical prediction of aμ has been in greater than 3 σ tension with the experimental measurement since the results of the Muon g-2 Experiment at the Brookhaven National Laboratory (E-821) were published in the early 2000s with a precision of 540 ppb. To settle this tension, the new Fermilab Muon g - 2 Experiment (E-989) is currently taking data with the aim of …


Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper Jan 2022

Neutron Spectroscopy Of The Parity-Violating 0.734 Ev Neutron Resonance In Lanthanum-139 In Preparation For The Noptrex Time Reversal Violation Experiment, Danielle Schaper

Theses and Dissertations--Physics and Astronomy

One of the most outstanding questions in physics is the matter-antimatter asymmetry of the Universe, resulting from excess baryogenesis processes during the early moments of the formation of the Universe. At present, the types of processes needed to explain this matter excess, so-called `CP-violating processes' are known to exist within the present framework of the Standard Model of particle physics. However, decades of research has shown that our understanding of the origin of these processes is incomplete, as we do not presently know of enough sources of CP-violating processes to account for the large baryon asymmetry that we observe. The …


Studies Of Time Variations Of The Magnetic Field In The Nedm@Sns Experiment, Mojtaba Behzadipour Jan 2022

Studies Of Time Variations Of The Magnetic Field In The Nedm@Sns Experiment, Mojtaba Behzadipour

Theses and Dissertations--Physics and Astronomy

It is thought that equal quantities of matter and antimatter were generated at the moment of the Big Bang. However, observations of the Universe show that there is a significant excess of matter over antimatter. The matter-antimatter asymmetry in the Universe (baryon to photon ratio) is observed to be of the order of 10-10 [1]. Baryogenesis is a possible explanation for the matter-antimatter asymmetry of the universe. In 1967, Sakharov proposed three criteria necessary for Baryogenesis. The three conditions are: 1) baryon number violation, 2) C and CP violation and 3) departure from thermal equilibrium. However, the Standard Model's …


Enhancements To Uniformity Of Magnetic Fields At The Sns Nedm Experiment, Ahmad Saftah Jan 2022

Enhancements To Uniformity Of Magnetic Fields At The Sns Nedm Experiment, Ahmad Saftah

Theses and Dissertations--Physics and Astronomy

The nEDM experiment at the Spallation Neutron Source (SNS) aims to increase
experimental sensitivity to hadronic CP violation by nearly two orders of magnitude.To do that the nEDMSNS experiment requires an extremely uniform magnetic field to maintain 3He polarization during transit to the measurement cell. The Magnetic Shield Enclosure (MSE) coil provides the required field. However, the superconducting shield distorts the MSE field.

This thesis discusses a magnetic cloak for the nEDM@SNS experiment that can restore the MSE field uniformity and cos theta coils designed to test the magnetic cloak in the first part. The second part of this …


Elastic And Inelastic Compton Scattering From Deuterium At 61 Mev, Danula Godagama Jan 2022

Elastic And Inelastic Compton Scattering From Deuterium At 61 Mev, Danula Godagama

Theses and Dissertations--Physics and Astronomy

A Compton scattering experiment using deuteron as target nuclei was carried out at the HIγS free electron laser facility at Durham, NC, with the goal of extracting the electromagnetic scalar polarizabilities of the neutron, αn and βn. A beam of 61~MeV gamma photons with a narrow energy spread was incident on a liquid deuterium target. The scattered gamma rays were detected at three scattering angles, 55o, 115o and 150o. Backward-scattered gamma rays were detected using two large-volume NaI spectrometers with energy resolution (σE/E) better than 2%. The combined effect of …


Analyzing The Effect Of Second-Class Currents On Neutron Beta Decay Observables And The Effect Of Thomas Rotation On The Relativistic Transformations Of Electromagnetic Fields, Lakshya Malhotra Jan 2021

Analyzing The Effect Of Second-Class Currents On Neutron Beta Decay Observables And The Effect Of Thomas Rotation On The Relativistic Transformations Of Electromagnetic Fields, Lakshya Malhotra

Theses and Dissertations--Physics and Astronomy

The next generation of neutron beta decay measurements will attempt to analyze various beta decay observables of up to O(10-4) precision. At this level of experimental precision, the effects of second-class currents will contribute theoretical uncertainties to the interpretation of these measurements. Therefore, it is important to investigate the effects of these second-class currents on decay parameters, such as the Fierz interference term b which is linear in beyond standard model couplings. A maximum likelihood statistical framework and Rfit techniques are employed to study these second-class currents effects. Inputs to the Rfit technique are obtained through …


Effective Field Theory Applications: From Dark Matter To Neutrino Nucleon Scattering, Qing Chen Jan 2021

Effective Field Theory Applications: From Dark Matter To Neutrino Nucleon Scattering, Qing Chen

Theses and Dissertations--Physics and Astronomy

Weakly-interacting-massive-particles (WIMPs) are a large class of viable dark matter candidates. We compute cross sections for electroweak-doublet WIMPs scattering on atomic nuclei, at leading and subleading order using heavy WIMP effective field theory. Neutrino-nucleon charged current elastic scattering is an important process in the detectors of long baseline accelerator neutrino oscillation experiments. We compute QED radiative corrections to this process employing soft-collinear effective field theory.


The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang Jan 2020

The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang

Theses and Dissertations--Physics and Astronomy

Lattice Quantum Chromodynamics (QCD) provides a way to have a precise calculation and a new way of understanding the hadrons from first principles. From this perspective, this dissertation focuses first on a precise calculation of the pion form factor using overlap fermions on six ensembles of 2+1-flavor domain-wall configurations generated by the RBC/UKQCD collaboration with pion masses varying from 137 to 339 MeV. Taking advantage of the fast Fourier transform, low-mode substitution (LMS) and the multi-mass algorithm to access many combinations of source and sink momenta, we have done a simulation with various valence quark masses and with a range …


Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering Jan 2020

Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering

Theses and Dissertations--Physics and Astronomy

The neutron electric dipole moment (nEDM) collaboration at the Spallation Neutron Source plans to use ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. In this apparatus, neutrons are stored in poly(methyl methacrylate), PMMA, cells located in a strong, stable electric field. This electric field is produced by high voltage electrodes located outside of the neutron cells. Several sources generate charged particles inside the neutron cells. The electric field pulls these charges farther apart, attracting each to the oppositely charged electrode. As the charges build up on the cells walls, they create an …


Sensitivity Of Electron-Proton Coincidence Asymmetries In Neutron Beta-Decay To Scalar And Tensor Interactions, Subash C. Nepal Jan 2020

Sensitivity Of Electron-Proton Coincidence Asymmetries In Neutron Beta-Decay To Scalar And Tensor Interactions, Subash C. Nepal

Theses and Dissertations--Physics and Astronomy

We study the combined sensitivity of measurements of electron-proton coincidence asymmetries in polarized neutron beta-decay together with a measurement of the electron energy spectrum in unpolarized neutron beta-decay to beyond Standard Model (BSM) scalar and tensor interactions, via the appearance of such BSM physics in the Fierz interference terms b and bv. Whereas measurements of the electron energy spectrum directly probe b, both the proton and neutrino asymmetries for which experimental results exist are not sensitive to bv, but effectively to b - bv. This results in reduced sensitivity to BSM scalar and …


A Detection And Data Acquisition System For Precision Beta Decay Spectroscopy, Aaron P. Jezghani Jan 2019

A Detection And Data Acquisition System For Precision Beta Decay Spectroscopy, Aaron P. Jezghani

Theses and Dissertations--Physics and Astronomy

Free neutron and nuclear beta decay spectroscopy serves as a robust laboratory for investigations of the Standard Model of Particle Physics. Observables such as decay product angular correlations and energy spectra overconstrain the Standard Model and serve as a sensitive probe for Beyond the Standard Model physics. Improved measurement of these quantities is necessary to complement the TeV scale physics being conducted at the Large Hadron Collider. The UCNB, 45Ca, and Nab experiments aim to improve upon existing measurements of free neutron decay angular correlations and set new limits in the search for exotic couplings in beta decay. To …


Prompt Fission Neutron Energy Spectrum Of N+235U, Jason M. Mcginnis Jan 2019

Prompt Fission Neutron Energy Spectrum Of N+235U, Jason M. Mcginnis

Theses and Dissertations--Physics and Astronomy

Despite nuclear fission prominence in nuclear physics, there are still several fundamental open questions about this process. One uncertainty is the energy distribution of neutrons emitted immediately after fission. In particular the relative energy distribution of neutrons above 8~MeV has been difficult to measure. This experiment measured the prompt neutron energy spectrum of n+235U from 3-10~MeV. The measurement took place at Los Alamos National Laboratory (LANL) and used a double time-of-flight technique to measure both the beam and fission neutron kinetic energies. Fission event timing was measured with a parallel plate avalanche counter. The fission neutron time-of-flight was …


Magnetic Field Monitoring In The Sns Neutron Edm Experiment, Alina Aleksandrova Jan 2019

Magnetic Field Monitoring In The Sns Neutron Edm Experiment, Alina Aleksandrova

Theses and Dissertations--Physics and Astronomy

It is a well known fact that the visible universe is made almost entirely of baryonic matter. Yet, this is also one of the greatest puzzles that physicists are trying to solve: Where did all of this matter come from in the first place? The Standard Model (SM) of particle physics predicts a baryon asymmetry that is much smaller than what is observed in nature. In order to try and explain this discrepancy, Sakharov (1967) postulated three necessary conditions for baryogenesis in the early universe. One of these is the requirement that charge conjugation (C) and the product of C …


Determination Of The Neutron Beta-Decay Asymmetry Parameter A Using Polarized Ultracold Neutrons, Michael A.-P. Brown Jan 2018

Determination Of The Neutron Beta-Decay Asymmetry Parameter A Using Polarized Ultracold Neutrons, Michael A.-P. Brown

Theses and Dissertations--Physics and Astronomy

The UCNA Experiment at the Los Alamos Neutron Science Center (LANSCE) is the first measurement of the β-decay asymmetry parameter A0 using polarized ultracold neutrons (UCN). A0 , which represents the parity-violating angular correlation between the direction of the initial neutron spin and the emitted decay electron’s momentum, determines λ = gA /gV , the ratio of the weak axial-vector and vector coupling constants. A high-precision determination of λ is important for weak interaction physics, and when combined with the neutron lifetime it permits an extraction of the CKM matrix element Vud solely …


Probing The Low-X Gluon Helicity Distribution With Dijet Double Spin Asymmetries In Polarized Proton Collisions At √S = 510 Gev, Suvarna Ramachandran Jan 2018

Probing The Low-X Gluon Helicity Distribution With Dijet Double Spin Asymmetries In Polarized Proton Collisions At √S = 510 Gev, Suvarna Ramachandran

Theses and Dissertations--Physics and Astronomy

The proton is a complex subatomic particle consisting of quarks and gluons, and one of the key questions in nuclear physics is how the spin of the proton is distributed amongst its constituents. Polarized deep inelastic scattering experiments with leptons and protons estimate that the quark spin contribution is approximately 30%. The limited kinematic reach of these experiments, combined with the fact that they are only indirectly sensitive to the electrically neutral gluon, means they can provide very little information about the gluon contribution to the spin of the proton. In contrast, hadronic probes, such as polarized proton collisions provide …


Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman Jan 2018

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman

Theses and Dissertations--Physics and Astronomy

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the three Sakharov conditions to explain via baryogenesis the observed baryon asymmetry of the universe (BAU). The Standard Model of particle physics (SM) contains sources of CP violation, but cannot explain the BAU. This motivates searches for new physics beyond the standard model (BSM) which address the Sakharov criteria, including high-precision searches for new sources of CPV in systems for which the SM contribution is small, but larger effects may be present in BSM theories. A promising example is the search for the electric dipole moment of the neutron (nEDM), which …


Neutron-Antineutron Transitions: Exploring B – L Violation With Quarks, Xinshuai Yan Jan 2017

Neutron-Antineutron Transitions: Exploring B – L Violation With Quarks, Xinshuai Yan

Theses and Dissertations--Physics and Astronomy

In the Standard Model (SM), the quantity baryon number (B) − lepton number (L), B − L, is perfectly conserved. Therefore, the observation of B − L violation would reveal the existence of physics beyond the SM. Traditionally, given the severe experimental constraints on |∆B| = 1 processes, B − L violation with baryons is probed via neutron-antineutron (n − ) oscillations, although this process suffers from quenching in the presence of external fields or matter.

In this dissertation, we discuss another possibility, n − conversion, in which the |∆ …


Disconnected-Sea Quarks Contribution To Nucleon Electromagnetic Form Factors, Raza Sabbir Sufian Jan 2017

Disconnected-Sea Quarks Contribution To Nucleon Electromagnetic Form Factors, Raza Sabbir Sufian

Theses and Dissertations--Physics and Astronomy

We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = −0.064(14)(09) μN and the mean squared charge radius ⟨r2sE = −0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in …


A First Experimental Limit On The Relative Rates Of Muon Capture On Deuterium From The Quartet And Doublet Hyperfine Spin States Of The Μd Atom, Ray Kreswell Neely Jan 2017

A First Experimental Limit On The Relative Rates Of Muon Capture On Deuterium From The Quartet And Doublet Hyperfine Spin States Of The Μd Atom, Ray Kreswell Neely

Theses and Dissertations--Physics and Astronomy

The MuSun experiment will determine the muon capture rate on deuterium (µ− + dn + n + νµ) from the doublet hyperfine spin state, Λd, of muonic deuterium to a precision of 1.5%. Muon capture can occur from either the quartet or doublet state of the 1S orbital of the µd atom; however, the V-A nature of the process strongly suppresses the rate of capture from the quartet state, Λq. Muons in ultrapure deuterium gas may also catalyze d+d3He+n fusion through the formation …


Studying Transverse Momentum Dependent Distributions In Polarized Proton Collisions Via Azimuthal Single Spin Asymmetries Of Charged Pions In Jets, James Kevin Adkins Jan 2017

Studying Transverse Momentum Dependent Distributions In Polarized Proton Collisions Via Azimuthal Single Spin Asymmetries Of Charged Pions In Jets, James Kevin Adkins

Theses and Dissertations--Physics and Astronomy

A complete, fundamental understanding of the proton must include knowledge of the underlying spin structure. The transversity distribution, h1(x), which describes the transverse spin structure of quarks inside of a transversely polarized proton, is only accessible through channels that couple h1(x) to another chiral odd distribution, such as the Collins fragmentation function (ΔN Dπ/q(z,jT)). Significant Collins asymmetries of charged pions have been observed in semi-inclusive deep inelastic scattering (SIDIS) data. These SIDIS asymmetries combined with e+e- process asymmetries have allowed for …


A Measurement Of The Parity Violating Asymmetry In The Neutron Capture On 3He At Sns, Md Latiful Kabir Jan 2017

A Measurement Of The Parity Violating Asymmetry In The Neutron Capture On 3He At Sns, Md Latiful Kabir

Theses and Dissertations--Physics and Astronomy

Weak nucleon nucleon couplings are largely unknown because of the involved theoretical and experimental challenges. Theoretically the topic is difficult due to the non-perturbative nature of the strong interaction, which makes calculations of the couplings challenging. Experimentally, the topic is difficult given that 1) the observables are determined by ratios between strong couplings and weak couplings which differ in size by seven orders of magnitude, and 2) theoretically clean and predictable measurements are almost always restricted to simple systems that do not allow for effects that enhance the size of the asymmetry. However parity violation (PV) can be used to …


Magnetic Field Non-Uniformity Challenges In Neutron Electric Dipole Moment Experiments, Nima Nouri Jan 2016

Magnetic Field Non-Uniformity Challenges In Neutron Electric Dipole Moment Experiments, Nima Nouri

Theses and Dissertations--Physics and Astronomy

A new neutron Electric Dipole Moment (nEDM) experiment was proposed to be commissioned at the Fundamental Neutron Physics Beamline at the Spallation Neutron Source (SNS) of the Oak Ridge National Laboratory (ORNL). The underlying theme of this experiment (first conceived by Golub and Lamoreaux in 1994) is the search for new physics beyond the Standard Model of particle physics. The discovery of a non-zero nEDM would be of revolutionary importance to physics, with the discovery of such providing for evidence for new-beyond-the-Standard-Model physics required for a resolution to the unresolved puzzle of why the universe is dominated by matter, as …


Elastic Compton Scattering From Deuterium Near 100 Mev, Khayrullo Shoniyozov Jan 2016

Elastic Compton Scattering From Deuterium Near 100 Mev, Khayrullo Shoniyozov

Theses and Dissertations--Physics and Astronomy

Tagged photons from 81 to 116 MeV were used to measure elastic Compton scat- tering cross sections from deuterium and carbon targets at the MAX-lab facility in Lund. Scattered gamma rays were detected in three very large NaI(Tl) crystals with sufficient energy resolution to isolate deuterium elastic yields at scattering angles of 60°, 90°, 120° and 150°. Calculations indicate that back-angle Compton scattering on deuterium in this energy range is sensitive to the electric and magnetic polarizabilities of the nucleon. Results of this research were obtained with improved beam tagging system conditions compared to previous elastic Compton scattering experiments from …