Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Kentucky

Materials Chemistry

Organic Field Effect Transistor

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Towards The Rational Design Of Organic Semiconductors Through Computational Approaches, Qianxiang Ai Jan 2020

Towards The Rational Design Of Organic Semiconductors Through Computational Approaches, Qianxiang Ai

Theses and Dissertations--Chemistry

Though organic semiconductors have illustrated potential as industry-relevant materials for electronics applications, there are few guidelines that can take one from molecular design to functional materials. This limitation is, in part, due to incomplete understanding as to how the atomic-scale construction of the π-conjugated molecules that comprise the organic semiconductors determines the nature and strength of both the noncovalent intramolecular interactions that govern molecular conformation and noncovalent intermolecular interactions that regulate the energetic preference for solid-state packing. Hence, there remain several fundamental questions that need to be resolved in order to design organic semiconductors from a priori knowledge, including: What …


Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger Jan 2017

Acenes, Heteroacenes And Analogous Molecules For Organic Photovoltaic And Field Effect Transistor Applications, Devin B. Granger

Theses and Dissertations--Chemistry

Polycyclic aromatic hydrocarbons composed of benzenoid rings fused in a linear fashion comprise the class of compounds known as acenes. The structures containing three to six ring fusions are brightly colored and possess band gaps and charge transport efficiencies sufficient for semiconductor applications. These molecules have been investigated throughout the past several decades to assess their optoelectronic properties. The absorption, emission and charge transport properties of this series of molecules has been studied extensively to elucidate structure-property relationships. A wide variety of analogous molecules, incorporating heterocycles in place of benzenoid rings, demonstrate similar properties to the parent compounds and have …