Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physical Sciences and Mathematics

Static Malware Family Clustering Via Structural And Functional Characteristics, David George, Andre Mauldin, Josh Mitchell, Sufiyan Mohammed, Robert Slater Aug 2023

Static Malware Family Clustering Via Structural And Functional Characteristics, David George, Andre Mauldin, Josh Mitchell, Sufiyan Mohammed, Robert Slater

SMU Data Science Review

Static and dynamic analyses are the two primary approaches to analyzing malicious applications. The primary distinction between the two is that the application is analyzed without execution in static analysis, whereas the dynamic approach executes the malware and records the behavior exhibited during execution. Although each approach has advantages and disadvantages, dynamic analysis has been more widely accepted and utilized by the research community whereas static analysis has not seen the same attention. This study aims to apply advancements in static analysis techniques to demonstrate the identification of fine-grained functionality, and show, through clustering, how malicious applications may be grouped …


Study Of Radiation Effects In Gan-Based Devices, Han Gao Jul 2023

Study Of Radiation Effects In Gan-Based Devices, Han Gao

Electrical Engineering Theses and Dissertations

Radiation tolerance of wide-bandgap Gallium Nitride (GaN) high-electron-mobility transistors (HEMT) has been studied, including X-ray-induced TID effects, heavy-ion-induced single event effects, and neutron-induced single event effects. Threshold voltage shift is observed in X-ray irradiation experiments, which recovers over time, indicating no permanent damage formed inside the device. Heavy-ion radiation effects in GaN HEMTs have been studied as a function of bias voltage, ion LET, radiation flux, and total fluence. A statistically significant amount of heavy-ion-induced gate dielectric degradation was observed, which consisted of hard breakdown and soft breakdown. Specific critical injection level experiments were designed and carried out to explore …


Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva May 2023

Photonic Sensors Based On Integrated Ring Resonators, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis investigates the application of integrated ring resonators to different sensing applications. The sensors proposed here rely on the principle of optical whispering gallery mode (WGM) resonance shifts of the resonators. Three distinct sensing applications are investigated to demonstrate the concept: a photonic seismometer, an evanescent field sensor, and a zero-drift Doppler velocimeter. These concepts can be helpful in developing lightweight, compact, and highly sensitive sensors. Successful implementation of these sensors could potentially address sensing requirements for both space and Earth-bound applications. The feasibility of this class of sensors is assessed for seismic, proximity, and vibrational measurements.


Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps), Juan E. Nunez, Roger W. Tchegui Donfack, Rohit Rohit, Hayley Horn Mar 2023

Self-Learning Algorithms For Intrusion Detection And Prevention Systems (Idps), Juan E. Nunez, Roger W. Tchegui Donfack, Rohit Rohit, Hayley Horn

SMU Data Science Review

Today, there is an increased risk to data privacy and information security due to cyberattacks that compromise data reliability and accessibility. New machine learning models are needed to detect and prevent these cyberattacks. One application of these models is cybersecurity threat detection and prevention systems that can create a baseline of a network's traffic patterns to detect anomalies without needing pre-labeled data; thus, enabling the identification of abnormal network events as threats. This research explored algorithms that can help automate anomaly detection on an enterprise network using Canadian Institute for Cybersecurity data. This study demonstrates that Neural Networks with Bayesian …


Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan Sep 2022

Predicting Insulin Pump Therapy Settings, Riccardo L. Ferraro, David Grijalva, Alex Trahan

SMU Data Science Review

Millions of people live with diabetes worldwide [7]. To mitigate some of the many symptoms associated with diabetes, an estimated 350,000 people in the United States rely on insulin pumps [17]. For many of these people, how effectively their insulin pump performs is the difference between sleeping through the night and a life threatening emergency treatment at a hospital. Three programmed insulin pump therapy settings governing effective insulin pump function are: Basal Rate (BR), Insulin Sensitivity Factor (ISF), and Carbohydrate Ratio (ICR). For many people using insulin pumps, these therapy settings are often not correct, given their physiological needs. While …


Electricity Market Operations With Massive Renewable Integration: New Designs, Shengfei Yin Jul 2021

Electricity Market Operations With Massive Renewable Integration: New Designs, Shengfei Yin

Electrical Engineering Theses and Dissertations

Electricity market has been transitioning from a conventional and deterministic operation to a stochastic operation under the increasing penetration of renewable energy. Industry-level solutions toward the future electricity market operation ask for both accuracy and efficiency while maintaining model interpretability. Hence, reliable stochastic optimization techniques come to the first place for such a complex and dynamic problem.

This work starts at proposing a solution strategy for the uncertainty-based power system planning problem, which acts as a preliminary and instructs the electricity market operation. Considering 100% renewable penetration in the future, it analyzes the cost-effectiveness of renewable energy from a long-term …


Characterization Of Landslide Processes From Radar Remote Sensing And Hydromechanical Modeling, Yuankun Xu May 2021

Characterization Of Landslide Processes From Radar Remote Sensing And Hydromechanical Modeling, Yuankun Xu

Earth Sciences Theses and Dissertations

Landsides are a natural geomorphic process yet a dangerous hazard which annually causes thousands of casualties and billions of property loss in a global scale. Understanding landslide motion kinematics from early initiation to final deposition is critical for monitoring, assessing, and forecasting landslide movement in order to mitigate their hazards. Landslides occur under diverse environmental settings and appear in variable types; however, all types of landslides can be mechanically attributed to shearing failure at the basal surface due to stress regime shift contributed by internal and/or external forcing. Typical internal factors include soil/rock weathering, whereas typical external triggering forces encompass …


Using Machine Learning Methods To Predict The Movement Trajectories Of The Louisiana Black Bear, Daniel Clark, David Shaw, Armando Vela, Shane Weinstock, John Santerre, Joseph D. Clark May 2021

Using Machine Learning Methods To Predict The Movement Trajectories Of The Louisiana Black Bear, Daniel Clark, David Shaw, Armando Vela, Shane Weinstock, John Santerre, Joseph D. Clark

SMU Data Science Review

In 1992, the Louisiana black bear (Ursus americanus luteolus) was placed on the U.S. Endangered Species List. This was due to bear populations in Louisiana being small and isolated enough where their populations couldn’t intersect with other populations to grow. Interchange of individuals between subpopulations of bears in Louisiana is critical to maintain genetic diversity and avoid inbreeding effects. Utilizing GPS (Global Positioning System) data gathered from 31 radio-collared bears from 2010 through 2012, this research will investigate how bears traverse the landscape, which has implications for gene exchange. This paper will leverage machine learning tools to improve upon existing …


Characterization Of Uranium, Lead, And Rare Earth Element Pollution In Natural Soils And Sediments, Hope Rasmussen Apr 2021

Characterization Of Uranium, Lead, And Rare Earth Element Pollution In Natural Soils And Sediments, Hope Rasmussen

Civil and Environmental Engineering Theses and Dissertations

Heavy metals in the environment add to the global burden of pollution, negatively impacting public health and ecosystem resilience. This study included projects regarding uranium (U), lead (Pb), and rare earth elements (REE) in natural samples, due to their known toxicity, ubiquity, and relevance in context to recent pollution trends. The first project focused on testing the potential of using a hydroxyapatite product as a remediation solution for U-contaminated groundwater and soil at an EPA Superfund site. The results showed that the U was sequestered in a highly crystalline mineral form within the solids, guiding the EPA to specify the …


Multigrid For The Nonlinear Power Flow Equations, Enrique Pereira Batista Dec 2020

Multigrid For The Nonlinear Power Flow Equations, Enrique Pereira Batista

Mathematics Theses and Dissertations

The continuously changing structure of power systems and the inclusion of renewable
energy sources are leading to changes in the dynamics of modern power grid,
which have brought renewed attention to the solution of the AC power flow equations.
In particular, development of fast and robust solvers for the power flow problem
continues to be actively investigated. A novel multigrid technique for coarse-graining
dynamic power grid models has been developed recently. This technique uses an
algebraic multigrid (AMG) coarsening strategy applied to the weighted
graph Laplacian that arises from the power network's topology for the construction
of coarse-grain approximations to …


A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad Aug 2020

A Modeling Framework For Urban Growth Prediction Using Remote Sensing And Video Prediction Technologies: A Time-Dependent Convolutional Encoder-Decoder Architecture, Ahmed Hassan Jaad

Civil and Environmental Engineering Theses and Dissertations

Studying the growth pattern of cities/urban areas has received considerable attention during the past few decades. The goal is to identify directions and locations of potential growth, assess infrastructure and public service requirements, and ensure the integration of the new developments with the existing city structure. This dissertation presents a novel model for urban growth prediction using a novel machine learning model. The model treats successive historical satellite images of the urban area under consideration as a video for which future frames are predicted. A time-dependent convolutional encoder-decoder architecture is adopted. The model considers as an input a satellite image …


Space And Depth-Resolved Naturally Occurring Toxic Groundwater Species In Bangladesh And Rwanda: Origination And Risk Analysis, Kenneth Hamilton May 2020

Space And Depth-Resolved Naturally Occurring Toxic Groundwater Species In Bangladesh And Rwanda: Origination And Risk Analysis, Kenneth Hamilton

Civil and Environmental Engineering Theses and Dissertations

Access to safe potable water is a necessity for all. Groundwater is a commonly relied upon drinking water source for many areas around the world. This is especially true for communities in high density, rural settings. Such is the case for populations near Cox’s Bazaar, Bangladesh, and in the Bugesera region of Rwanda. Sediment and groundwater contamination, through toxic dissolved species, represents a significant public health risk to exposed populations. Tropical soils, such as the soil profiles in Bangladesh and Rwanda, often contain higher concentrations of heavy metals (Rieuwerts, 2007). Additionally, nitrate from fertilizers, are widely used on the soils …


Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr Dec 2019

Evaluation Of The Mechanisms And Effectiveness Of Nano-Hydroxides, Wood And Dairy Manure-Derived Biochars To Remove Fluoride And Heavy Metals From Water, Anna Rose Wallace, Wenjie Sun Dr, Chunming Su Dr

Civil and Environmental Engineering Theses and Dissertations

The development of effective treatment processes for the removal contaminants, such as fluoride and heavy metals, from polluted water have been urgently needed due to serious environmental health and safety concerns. In this dissertation, a variety of materials including various (hydro)oxide nanomaterials, biochars and surface modified biochar were studied to evaluate their effectiveness and mechanism on removing fluoride or mixed heavy metals from water.

In the Chapter 2, this study investigated the adsorptive removal of fluoride from water using various (hydro)oxide nanomaterials, focusing on ferrihydrite, hydroxyapatite (HAP) and brucite, which have the potential to be used as sorbents for surface …


Identifying Customer Churn In After-Market Operations Using Machine Learning Algorithms, Vitaly Briker, Richard Farrow, William Trevino, Brent Allen Dec 2019

Identifying Customer Churn In After-Market Operations Using Machine Learning Algorithms, Vitaly Briker, Richard Farrow, William Trevino, Brent Allen

SMU Data Science Review

This paper presents a comparative study on machine learning methods as they are applied to product associations, future purchase predictions, and predictions of customer churn in aftermarket operations. Association rules are used help to identify patterns across products and find correlations in customer purchase behaviour. Studying customer behaviour as it pertains to Recency, Frequency, and Monetary Value (RFM) helps inform customer segmentation and identifies customers with propensity to churn. Lastly, Flowserve’s customer purchase history enables the establishment of churn thresholds for each customer group and assists in constructing a model to predict future churners. The aim of this model is …


Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi Oct 2019

Big-Data Talent Analytics In The Public Sector: A Promotion And Firing Model Of Employees At Federal Agencies, Rabih Neouchi

Operations Research and Engineering Management Theses and Dissertations

Talent analytics is a relatively new area of focus to researchers working in analytics and data science. Talent Analytics has the potential to help companies make many informed critical decisions around talent acquisition, promotion and retention. This work investigates data science to predict “shiny star” employees in the U.S. public sector, defined as top-notch performers over the years of a given time span. Its scope falls within talent analytics, also called people analytics, a relatively new research area.

We clean a data set made available by the U.S. Office of Personnel Management (OPM) and present two models to predict the …


Predicting Wind Turbine Blade Erosion Using Machine Learning, Casey Martinez, Festus Asare Yeboah, Scott Herford, Matt Brzezinski, Viswanath Puttagunta Aug 2019

Predicting Wind Turbine Blade Erosion Using Machine Learning, Casey Martinez, Festus Asare Yeboah, Scott Herford, Matt Brzezinski, Viswanath Puttagunta

SMU Data Science Review

Using time-series data and turbine blade inspection assessments, we present a classification model in order to predict remaining turbine blade life in wind turbines. Capturing the kinetic energy of wind requires complex mechanical systems, which require sophisticated maintenance and planning strategies. There are many traditional approaches to monitoring the internal gearbox and generator, but the condition of turbine blades can be difficult to measure and access. Accurate and cost- effective estimates of turbine blade life cycles will drive optimal investments in repairs and improve overall performance. These measures will drive down costs as well as provide cheap and clean electricity …


Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan Aug 2019

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan

SMU Data Science Review

In this paper, we present novel approaches to predicting as- set failure in the electric distribution system. Failures in overhead power lines and their associated equipment in particular, pose significant finan- cial and environmental threats to electric utilities. Electric device failure furthermore poses a burden on customers and can pose serious risk to life and livelihood. Working with asset data acquired from an electric utility in Southern California, and incorporating environmental and geospatial data from around the region, we applied a Random Forest methodology to predict which overhead distribution lines are most vulnerable to fail- ure. Our results provide evidence …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater May 2019

Self-Driving Cars: Evaluation Of Deep Learning Techniques For Object Detection In Different Driving Conditions, Ramesh Simhambhatla, Kevin Okiah, Shravan Kuchkula, Robert Slater

SMU Data Science Review

Deep Learning has revolutionized Computer Vision, and it is the core technology behind capabilities of a self-driving car. Convolutional Neural Networks (CNNs) are at the heart of this deep learning revolution for improving the task of object detection. A number of successful object detection systems have been proposed in recent years that are based on CNNs. In this paper, an empirical evaluation of three recent meta-architectures: SSD (Single Shot multi-box Detector), R-CNN (Region-based CNN) and R-FCN (Region-based Fully Convolutional Networks) was conducted to measure how fast and accurate they are in identifying objects on the road, such as vehicles, pedestrians, …


Analysis Of Computer Audit Data To Create Indicators Of Compromise For Intrusion Detection, Steven Millett, Michael Toolin, Justin Bates May 2019

Analysis Of Computer Audit Data To Create Indicators Of Compromise For Intrusion Detection, Steven Millett, Michael Toolin, Justin Bates

SMU Data Science Review

Network security systems are designed to identify and, if possible, prevent unauthorized access to computer and network resources. Today most network security systems consist of hardware and software components that work in conjunction with one another to present a layered line of defense against unauthorized intrusions. Software provides user interactive layers such as password authentication, and system level layers for monitoring network activity. This paper examines an application monitoring network traffic that attempts to identify Indicators of Compromise (IOC) by extracting patterns in the network traffic which likely corresponds to unauthorized access. Typical network log data and construct indicators are …


Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia May 2019

Visualization And Machine Learning Techniques For Nasa’S Em-1 Big Data Problem, Antonio P. Garza Iii, Jose Quinonez, Misael Santana, Nibhrat Lohia

SMU Data Science Review

In this paper, we help NASA solve three Exploration Mission-1 (EM-1) challenges: data storage, computation time, and visualization of complex data. NASA is studying one year of trajectory data to determine available launch opportunities (about 90TBs of data). We improve data storage by introducing a cloud-based solution that provides elasticity and server upgrades. This migration will save $120k in infrastructure costs every four years, and potentially avoid schedule slips. Additionally, it increases computational efficiency by 125%. We further enhance computation via machine learning techniques that use the classic orbital elements to predict valid trajectories. Our machine learning model decreases trajectory …


Geo-Spatial Mapping As A Catalyst For Creative And Engaged Design In Engineering Education, Jessie Zarazaga Apr 2019

Geo-Spatial Mapping As A Catalyst For Creative And Engaged Design In Engineering Education, Jessie Zarazaga

Multidisciplinary Studies Theses and Dissertations

Exploiting the technology of geo-spatial mapping student designers can develop deep understandings of the rich and layered data of a spatial context, a situational understanding essential to responsible civic design. However the actions inherent in the construction of spatial data armatures can simultaneously be harnessed as creative strategies, in which mapping processes become the context for generative spatial play. The ambition of this study is to propose efficient pedagogic structures to help prepare civil and environmental student engineers to be not only strong participants, but leaders, in the design of the built environment. The interpretation of site data, mapped as …


Pedestrian Safety -- Fundamental To A Walkable City, Joshua Herrera, Patrick Mcdevitt, Preeti Swaminathan, Raghuram Srinivas Jan 2019

Pedestrian Safety -- Fundamental To A Walkable City, Joshua Herrera, Patrick Mcdevitt, Preeti Swaminathan, Raghuram Srinivas

SMU Data Science Review

In this paper, we present a method to identify urban areas with a higher likelihood of pedestrian safety related events. Pedestrian safety related events are pedestrian-vehicle interactions that result in fatalities, injuries, accidents without injury, or near--misses between pedestrians and vehicles. To develop a solution to this problem of identifying likely event locations, we assemble data, primarily from the City of Cincinnati and Hamilton County, that include safety reports from a five year period, geographic information for these events, citizen survey of pedestrian reported concerns, non-emergency requests for service for any cause in the city, property values and public transportation …


Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal Jan 2019

Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal

SMU Data Science Review

In this paper, we present a comparative study of text sentiment classification models using term frequency inverse document frequency vectorization in both supervised machine learning and lexicon-based techniques. There have been multiple promising machine learning and lexicon-based techniques, but the relative goodness of each approach on specific types of problems is not well understood. In order to offer researchers comprehensive insights, we compare a total of six algorithms to each other. The three machine learning algorithms are: Logistic Regression (LR), Support Vector Machine (SVM), and Gradient Boosting. The three lexicon-based algorithms are: Valence Aware Dictionary and Sentiment Reasoner (VADER), Pattern, …


Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater Jan 2019

Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater

SMU Data Science Review

The problem of forecasting market volatility is a difficult task for most fund managers. Volatility forecasts are used for risk management, alpha (risk) trading, and the reduction of trading friction. Improving the forecasts of future market volatility assists fund managers in adding or reducing risk in their portfolios as well as in increasing hedges to protect their portfolios in anticipation of a market sell-off event. Our analysis compares three existing financial models that forecast future market volatility using the Chicago Board Options Exchange Volatility Index (VIX) to six machine/deep learning supervised regression methods. This analysis determines which models provide best …


Improving Gas Well Economics With Intelligent Plunger Lift Optimization Techniques, Atsu Atakpa, Emmanuel Farrugia, Ryan Tyree, Daniel W. Engels, Charles Sparks Jan 2019

Improving Gas Well Economics With Intelligent Plunger Lift Optimization Techniques, Atsu Atakpa, Emmanuel Farrugia, Ryan Tyree, Daniel W. Engels, Charles Sparks

SMU Data Science Review

In this paper, we present an approach to reducing bottom hole plunger dwell time for artificial lift systems. Lift systems are used in a process to remove contaminants from a natural gas well. A plunger is a mechanical device used to deliquefy natural gas wells by removing contaminants in the form of water, oil, wax, and sand from the wellbore. These contaminants decrease bottom-hole pressure which in turn hampers gas production by forming a physical barrier within the well tubing. As the plunger descends through the well it emits sounds which are recorded at the surface by an echo-meter that …


Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva Dec 2018

Optical Micro-Seismometer Based On Evanescent Field Perturbation Of Whispering Gallery Modes, Jaime Da Silva

Mechanical Engineering Research Theses and Dissertations

This thesis proposes a light-weight, compact, and accurate optical micro-seismometer that could be used in many applications, such as planetary exploration. The sensor proposed here is based on the principle of whispering gallery optical mode (WGM) resonance shifts of a dielectric micro-resonator due to disturbances of its evanescent field. The micro-seismometer could be used in place of the traditional bulky seismometers. The design of a waveguide-resonator and mechanical structure to disturb the evanescent field are presented. A proof-of-concept a seismometer model that uses a 5µm ring resonator is numerically tested with actual seismic data. The results show that a WGM-based …


Indirect Imaging Using Computational Imaging Techniques, Aparna Viswanath Oct 2018

Indirect Imaging Using Computational Imaging Techniques, Aparna Viswanath

Electrical Engineering Theses and Dissertations

The work describes various methods employed towards solving the problem of indirect imaging. Computational techniques are employed to indirectly decipher information about an object hidden from view of a camera. Notion of virtualizing the source of illumination and detectors on real world rough surfaces was exploited to construct a non line of sight computational imager. Diversity was explored from the stand point of both illumination of the object and imaging of light reflected from the object. To understand the impact of scattering by real world rough surfaces, an instrument was developed that allows characterization of isoplanatic angle for different surface …


Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels Aug 2018

Yelp’S Review Filtering Algorithm, Yao Yao, Ivelin Angelov, Jack Rasmus-Vorrath, Mooyoung Lee, Daniel W. Engels

SMU Data Science Review

In this paper, we present an analysis of features influencing Yelp's proprietary review filtering algorithm. Classifying or misclassifying reviews as recommended or non-recommended affects average ratings, consumer decisions, and ultimately, business revenue. Our analysis involves systematically sampling and scraping Yelp restaurant reviews. Features are extracted from review metadata and engineered from metrics and scores generated using text classifiers and sentiment analysis. The coefficients of a multivariate logistic regression model were interpreted as quantifications of the relative importance of features in classifying reviews as recommended or non-recommended. The model classified review recommendations with an accuracy of 78%. We found that reviews …


Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman Jul 2018

Fuel Flow Reduction Impact Analysis Of Drag Reducing Film Applied To Aircraft Wings, Damon Resnick, Chris Donlan, Nimish Sakalle, Cody Pinkerman

SMU Data Science Review

In this paper, we present an analysis of flight data in order to determine whether the application of the Edge Aerodynamix Conformal Vortex Generator (CVG), applied to the wings of aircraft, reduces fuel flow during cruising conditions of flight. The CVG is a special treatment and film applied to the wings of an aircraft to protect the wings and reduce the non-laminar flow of air around the wings during flight. It is thought that by reducing the non-laminar flow or vortices around and directly behind the wings that an aircraft will move more smoothly through the air and provide a …