Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Proper Motion Objects In The Hubble Deep Field, M. Kilic, Ted Von Hippel, Et Al. Aug 2019

Proper Motion Objects In The Hubble Deep Field, M. Kilic, Ted Von Hippel, Et Al.

Ted von Hippel

Using the deepest and finest resolution images of the universe acquired with the Hubble Space Telescope and a similar image taken 7 yr later for the Great Observatories Origins Deep Survey, we have derived proper motions for the point sources in the Hubble Deep Field–North. Two faint blue objects, HDF 2234 and HDF 3072, are found to display significant proper motion, 10:0 ± 2:5 and 15:5 ± 3:8 mas yr¯1. Photometric distances and tangential velocities for these stars are consistent with disk white dwarfs located at ~500 pc. The faint blue objects analyzed by Ibata et al. and Mendez & …


Dependence Of Gama Galaxy Halo Masses On The Cosmic Web Environment From 100 Deg2 Of Kids Weak Lensing Data., Margot M. Brouwer, Marcello Cacciato, Andrej Dvornik, Lizzie Eardley, Catherine Heymans, Henk Hoekstra, Konrad Kuijken, Tamsyn Mcnaught-Roberts, Cristobal Sifon, Massimo Viola, Mehmet Alpaslan, Maciej Bilicki, Joss Bland-Hawthorn, Sarah Brough, Ami Choi, Simon P. Driver, Thomas Erben, Aniello Grado, Hendrik Hildebrandt, Benne W. Holwerda, Andrew M. Hopkins, Jelte T. A. De Jong, Jochen Liske, John Mcfarland, Reiko Nakajima, Nicola R. Napolitano, Peder Norberg, John A. Peacock, Mario Radovich, Aaron S. G. Robotham, Peter Schneider, Gert Sikkema, Edo Van Uitert, Gijs Verdoes Kleijn, Edwin A. Valentijn Feb 2017

Dependence Of Gama Galaxy Halo Masses On The Cosmic Web Environment From 100 Deg2 Of Kids Weak Lensing Data., Margot M. Brouwer, Marcello Cacciato, Andrej Dvornik, Lizzie Eardley, Catherine Heymans, Henk Hoekstra, Konrad Kuijken, Tamsyn Mcnaught-Roberts, Cristobal Sifon, Massimo Viola, Mehmet Alpaslan, Maciej Bilicki, Joss Bland-Hawthorn, Sarah Brough, Ami Choi, Simon P. Driver, Thomas Erben, Aniello Grado, Hendrik Hildebrandt, Benne W. Holwerda, Andrew M. Hopkins, Jelte T. A. De Jong, Jochen Liske, John Mcfarland, Reiko Nakajima, Nicola R. Napolitano, Peder Norberg, John A. Peacock, Mario Radovich, Aaron S. G. Robotham, Peter Schneider, Gert Sikkema, Edo Van Uitert, Gijs Verdoes Kleijn, Edwin A. Valentijn

Benne Holwerda

Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy–galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using ∼100deg2" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline-table; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">∼100deg2∼100deg2 of overlapping data from the Kilo-Degree Survey. In each …


A Kinematical Approach To Conformal Cosmology, Gabriele U. Varieschi Jun 2014

A Kinematical Approach To Conformal Cosmology, Gabriele U. Varieschi

Gabriele Varieschi

We present an alternative cosmology based on conformal gravity, as originally introduced by H. Weyl and recently revisited by P. Mannheim and D. Kazanas. Unlike past similar attempts our approach is a purely kinematical application of the conformal symmetry to the Universe, through a critical reanalysis of fundamental astrophysical observations, such as the cosmological redshift and others. As a result of this novel approach we obtain a closed-form expression for the cosmic scale factor R(t) and a revised interpretation of the space-time coordinates usually employed in cosmology. New fundamental cosmological parameters are introduced and evaluated. This emerging new cosmology does …


A Lagrangian Which Mathematically Models Lambda Cdm Cosmology And Explains The Null Results Of Dark Astroparticle Searches., Hontas Farmer Dec 2012

A Lagrangian Which Mathematically Models Lambda Cdm Cosmology And Explains The Null Results Of Dark Astroparticle Searches., Hontas Farmer

Hontas F Farmer

Background: The Lambda CDM model or is the standard model of modern cosmology. It is named for dark energy and cold dark matter. This model contains a number of separate components with different mathematical formulations. Strong observational evidence for dark matter has been found by astronomy. At the same time astroparticle physics observations have not found solid evidence of dark matter. Purpose: The purpose of this paper is to reconcile observations of dark matter effects on the galactic and cosmological scales with the null results of astroparticle physics observations such as CDMS and ANTARES. This paper will also provide a …


Effects Of Cp Violation On Event Rates In The Direct Detection Of Dark Matter, Utpal Chattopadhyay, Tarek Ibrahim, Pran Nath Feb 2011

Effects Of Cp Violation On Event Rates In The Direct Detection Of Dark Matter, Utpal Chattopadhyay, Tarek Ibrahim, Pran Nath

Pran Nath

A full analytic analysis of the effects of CP violating phases on the event rates in the direct detection of dark matter in the scattering of neutralinos from nuclear targets is given. The analysis includes CP violating phases in softly broken supersymmetry in the framework of the minimal supersymmetric standard model (MSSM) when generational mixings are ignored. A numerical analysis shows that large CP violating phases including the constraints from the experimental limits on the neutron and the electron electric dipole moment (EDM) can produce substantial effects on the event rates in dark matter detectors.