Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physical Sciences and Mathematics

Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho Sep 2014

Electrochemically Active Biofilm Assisted Synthesis Of Ag@Ceo2 Nanocomposites For Antimicrobial Activity, Photocatalysis And Photoelectrodes, Mohammad Mansoob Khan Dr, S. A. Ansari, J. H. Lee, M. O. Ansari, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Ag@CeO2 nanocomposites were synthesized by a biogenic and green approach using electrochemically active biofilms (EABs) as a reducing tool. The as-synthesized Ag@CeO2 nanocomposites were characterized and used in antimicrobial, visible light photocatalytic and photoelectrode studies. The Ag@CeO2 nanocomposites showed effective and efficient bactericidal activities and survival test against Escherichia coli O157:H7, and Pseudomonas aeruginosa. The as-synthesized Ag@CeO2 nanocomposites also exhibited enhanced visible light photocatalytic degradation of 4-nitrophenol and methylene blue than pure CeO2. A photocatalytic investigation showed that the Ag@CeO2 nanocomposites possessed excellent visible light photocatalytic activities compared to pure CeO2. Electrochemical impedance spectroscopy and photocurrent measurements showed that the …


Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho Aug 2014

Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites were used for the catalytic degradation of methyl orange and methylene blue by NaBH4. A detail pathway for step by step reduction, oxidation and complete mineralization of intermediates into the respective end-products was established by UV-vis spectroscopy, chemical oxygen demand, ion chromatography and cyclic voltammetry (CV). CV studies confirmed that the dyes were reduced and oxidized to the end-products by NaBH4 in the presence of Au@TiO2 nanocomposites and O2•, •OH and HO2• radicals generated in-situ. Results suggest that Au@TiO2 nanocomposites not only assist in the decolorization of dyes, but also promote their complete mineralization into harmless end-products.


Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier Jun 2014

Electrochemically Modulated Permeability Of Poly(Aniline) And Composite Poly(Aniline)−Poly(Styrenesulfonate) Membranes, D. L. Pile, Y. Zhang, Andrew C. Hillier

Andrew C. Hillier

The influence of oxidation state on the permeability of several probe molecules through conducting polymer membranes comprising composites of poly(aniline) and poly(styrenesulfonate) was examined in aqueous solution. Pure poly(aniline) membranes displayed a characteristic increase in permeability between reduced and half-oxidized states for neutrally charged phenol and negatively charged 4-hydroxybenzenesulfonate. In contrast, positively charged pyridine experienced decreased permeability through the membrane when poly(aniline) was switched from the reduced to the half-oxidized state. This behavior can be explained by a combination of oxidation-induced film swelling and the anion-exchange character of the positively charged membrane. The membrane composition was modified to include a …


Rapid And Reversible Generation Of A Microscale Ph Gradient Using Surface Electric Fields, Eric L. May, Andrew C. Hillier Jun 2014

Rapid And Reversible Generation Of A Microscale Ph Gradient Using Surface Electric Fields, Eric L. May, Andrew C. Hillier

Andrew C. Hillier

We report a method for the rapid and reversible generation of microscale pH gradients using a spatially varied electric field. A linear gradient in electrochemical potential is produced on an electrode surface consisting of a platinum catalyst layer on indium−tin oxide-coated glass by the application of two different potential values at spatially distinct surface locations. The resulting potential gradient drives the oxidation and reduction of water at different rates along the surface, as dictated by the local applied potential. A nonuniform distribution of pH in the neighboring solution results due to the variation in surface reaction rates. The extent and …


Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier Jun 2014

Scanning Electrochemical Mapping Of Spatially Localized Electrochemical Reactions Induced By Surface Potential Gradients, Shrisudersan Jayaraman, Erin L. May, Andrew C. Hillier

Andrew C. Hillier

The influence of a surface potential gradient on the location and extent of electrochemical reactions was examined using a scanning electrochemical microscope. A linear potential gradient was imposed on the surface of a platinum-coated indium tin oxide electrode by applying two different potential values at the edges of the electrode. The applied potentials were used to control the location and extent of several electrochemical reactions, including the oxidation of Ru(NH3)62+, the oxidation of H2, and the oxidation of H2 in the presence of adsorbed CO. Scanning electrochemical mapping of these reactions was achieved by probing the feedback current associated with …


Combinatorial Synthesis And Reactivity Screening Of Electro-Oxidation Catalyst Gradients, Shrisudersan Jayaraman, Andrew C. Hillier Jun 2014

Combinatorial Synthesis And Reactivity Screening Of Electro-Oxidation Catalyst Gradients, Shrisudersan Jayaraman, Andrew C. Hillier

Andrew C. Hillier

Combinatorial methods represent an appealing experimental method for the discovery of heterogeneous catalysts. One can efficiently identify candidate materials or sample vast regions of composition space using a combination f dense catalyst libraries and high-throughput reactivity screening techniques. This is particularly appealing for the discovery of novel catalysts for low temperature fuel cells where multi-component systems have shown improved performance.


Directed Electrodeposition Of Polymer Films Using Spatially Controllable Electric Field Gradients, Erin L. Ratcliff, Andrew C. Hillier Jun 2014

Directed Electrodeposition Of Polymer Films Using Spatially Controllable Electric Field Gradients, Erin L. Ratcliff, Andrew C. Hillier

Andrew C. Hillier

We report a method for the directed electrodeposition of polymer films in various patterns using spatially controllable electric field gradients. One- and two- dimensional surface electric field gradients were produced by applying different potential values at spatially distinct locations on an electrode surface. Variations in the resulting local electrochemical potentials were used to spatially manipulate the rate of electrodeposition of several polymers. By controlling the electric field gradient in the presence of sequentially varying deposition solutions, complex polymer patterns could be produced. One-dimensional structures consisting of alternating bands of polyaniline and either poly(phenylene) oxide or poly(aminophenylene) oxide were produced, as …


Grating-Coupler Assisted Infrared Reflection Absorption Spectroscopy For The Characterization Of Organic Thin Films, Bipin K. Singh, Andrew C. Hillier Jun 2014

Grating-Coupler Assisted Infrared Reflection Absorption Spectroscopy For The Characterization Of Organic Thin Films, Bipin K. Singh, Andrew C. Hillier

Andrew C. Hillier

We demonstrate how grating-coupler assisted infrared reflection absorption spectroscopy can be used to simultaneously determine the chemical identity and relative thickness of organic thin films. With a grating substrate, a threshold anomaly associated with passing off of the −1 diffracted order occurs at grazing angles of incidence, resulting in a sharp absorbance in the infrared. The position of this peak is sensitive to the grating geometry as well as the dielectric environment near its surface. Thus, shifts in the peak position can be used to determine the relative thickness of adsorbed films or quantify molecular adsorption events. To illustrate the …


High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier Jun 2014

High Rate Detection Of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining An Electrode-Coated Membrane With Hydrodynamic Flow In A Wall-Tube Configuration, Subramanian Venkatachalam, Robert J. Angelici, L. Keith Woo, Andrew C. Hillier

Andrew C. Hillier

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. …


Surface Plasmon Resonance Imaging Of Biomolecular Interactions On A Grating-Based Sensor Array, Bipin K. Singh, Andrew C. Hillier Jun 2014

Surface Plasmon Resonance Imaging Of Biomolecular Interactions On A Grating-Based Sensor Array, Bipin K. Singh, Andrew C. Hillier

Andrew C. Hillier

A surface plasmon resonance sensor array based upon a grating substrate was developed for the detection of biomolecular interactions. The substrate consisted of a gold grating prepared by wet chemical treatment of a commercial recordable compact disk. A custom-built floating pin microspotter was constructed to deliver solutions containing ω-functionalized linear alkanethiols to the grating surface and produce an array of sensor elements with different exposed functional end groups. This array platform can be used to study biomolecular interactions in a label-free, sensitive, and high-throughput format. To illustrate the performance of this device, a test protein (bovine serum albumin) was exposed …


A Multi-Electrode Electrochemical And Scanning Differential Electrochemical Mass Spectrometry Study Of Methanol Oxidation On Electrodeposited Ptxruy, K. Jambunathan, S. Jayaraman, Andrew C. Hillier May 2014

A Multi-Electrode Electrochemical And Scanning Differential Electrochemical Mass Spectrometry Study Of Methanol Oxidation On Electrodeposited Ptxruy, K. Jambunathan, S. Jayaraman, Andrew C. Hillier

Andrew C. Hillier

Methanol electro-oxidation was studied on a series of electrodeposited PtxRuy catalysts constructed as multielement band electrodes. A combination of electrochemical and scanning differential electrochemical mass spectrometry measurements were performed to evaluate the composition-dependence of methanol oxidation, methanol decomposition, CO2 current efficiency, and the product distribution at 25 and 50 °C. At 25 °C, cyclic voltammetry revealed that the presence of Ru led to enhanced methanol oxidation rates over that of pure Pt. Methanol decomposition showed a similar composition-dependence. Mass spectrometry measurements revealed the evolution of HCOOH and CO2 during methanol oxidation and allowed indirect determination …


Construction And Reactivity Screening Of A Surface Composition Gradient For Combinatorial Discovery Of Electro-Oxidation Catalysts, Shrisudersan Jayaraman, Andrew C. Hillier May 2014

Construction And Reactivity Screening Of A Surface Composition Gradient For Combinatorial Discovery Of Electro-Oxidation Catalysts, Shrisudersan Jayaraman, Andrew C. Hillier

Andrew C. Hillier

Materials possessing gradients in composition or structure are of interest for a range of applications, including the construction of functionally graded structural materials, as novel sensor and actuator platforms, and to control the site-specific binding of proteins and cells on surfaces. Gradients can also be used as sample libraries for combinatorial materials discovery that present an extremely dense sample set.


Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of A Tethered Poly(Ethylene Glycol) Surface Gradient For Studies Of Cell Adhesion Kinetics, K. Mougin, A. S. Ham, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating …


Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier May 2014

Construction Of Cell-Resistant Surfaces By Immobilization Of Poly(Ethylene Glycol) On Gold, K. Mougin, M. B. Lawrence, E. J. Fernandez, Andrew C. Hillier

Andrew C. Hillier

Considerable effort has been expended in efforts to create surfaces that resist the adsorption of proteins and cells for biomedical applications. The majority of such work has focused on surfaces constructed from bulk polymers or thin polymer films. However, the fabrication of surfaces via self-assembled monolayers (SAMs) has attracted considerable interest because of the robustness, versatility, and wide-ranging applicability of these materials. SAMs are particularly appealing for biological systems where well-defined surface chemistries can be created to facilitate coupling, biorecognition, or cell adhesion along with a host of other applications in biochemistry and biotechnology.


A Combined Triboelectrochemical Qcm For Studies Of The Cmp Of Copper, Wenquan Lu, Jian Zhang, Frank Kaufman, Andrew C. Hillier May 2014

A Combined Triboelectrochemical Qcm For Studies Of The Cmp Of Copper, Wenquan Lu, Jian Zhang, Frank Kaufman, Andrew C. Hillier

Andrew C. Hillier

In order to improve our understanding of the fundamental surface processes associated with the chemical mechanical planarization ~CMP! of metals, we have developed an experimental tool that combines the high resolution mass sensing capabilities of the quartz crystal microbalance ~QCM! with a triboelectrochemical testing system. A electrochemical QCM is combined with a polishing tool and force sensor in order to perform controlled surface abrasion while simultaneously monitoring mass changes and electrochemical signals at the metal/solution interface. This system can be used to simulate a metal polishing process with in situ surface measurement capabilities. Typical parameters that can be measured include …


Molecular Engineering Of Side-Chain Liquid Crystalline Polymers By Living Polymerizations, Coleen Pugh, Alan L. Kiste Apr 2014

Molecular Engineering Of Side-Chain Liquid Crystalline Polymers By Living Polymerizations, Coleen Pugh, Alan L. Kiste

Coleen Pugh

“Living” anionic, cationic, metalloporphyrin and ring-opening metathesis polymerizations have been used to prepare well-defined side-chain liquid crystalline homopolymers, block and graft copolymers and statistical copolymers. This paper analyzes their successes and failures by reviewing the mechanistic aspects and experimental conditions of each type of polymerization, and identifies other classes of mesogenic monomers that could be polymerized in a controlled manner in the future. The emerging structure/property relationships are then identified using well-defined SCLCPs in which only one structural feature is varied while all others remain constant. The thermal transitions of liquid crystalline polymethacrylates, polynorbomenes and poly(viny1 ether)s reach their limiting …


Effect Of Trans-Cis Photoisomerization On Phase Equilibria And Phase Transition Of Liquid-Crystalline Azobenzene Chromophore And Its Blends With Reactive Mesogenic Diacrylate, Namil Kim, Quan Li, Thein Kyu Apr 2014

Effect Of Trans-Cis Photoisomerization On Phase Equilibria And Phase Transition Of Liquid-Crystalline Azobenzene Chromophore And Its Blends With Reactive Mesogenic Diacrylate, Namil Kim, Quan Li, Thein Kyu

Thein Kyu

Photoisomerization-induced phase transition of neat liquid-crystalline azobenzene chromophore (LCAC) and its effect on phase diagrams of its mixtures with reactive mesogenic diacrylate monomer (RM257) have been investigated experimentally and theoretically. Upon irradiation with ultraviolet light, the nematic phase of LCAC transformed to isotropic, while the crystal phase showed corrugated textures on the surface (i.e., ripples). The phase-transition temperatures and corresponding morphologies of the blends have been investigated by means of differential scanning calorimetry and optical microscopy. A theoretical phase diagram of a binary nematic and crystalline system was constructed by self-consistently solving the combined free energies of Flory-Huggins, Maier-Saupe, and …


Spatio-Temporal Growth Of Nematic Domains In Liquid Crystal Polymer Mixtures, Hao-Wen Chiu, Thein Kyu Apr 2014

Spatio-Temporal Growth Of Nematic Domains In Liquid Crystal Polymer Mixtures, Hao-Wen Chiu, Thein Kyu

Thein Kyu

Dynamics of phase separation and morphology development in mixtures of a low molar mass liquid crystal (LC) and a polymer have been investigated theoretically in comparison with experimental results. In the theoretical model, the combined free-energy densities of Flory-Huggins theory for isotropic mixing and Maier-Saupe theory for nematic ordering have been incorporated into the time-dependent Ginzburg-Landau equation (type C). The temporal evolution of the structure factor and the emergence of phase-separated liquid crystal domains have been simulated on the basis of an explicit central difference method based on a square lattice (128 x 128) with a periodic boundary condition. Of …


Phase Diagrams Of A Binary Smectic-A Mixture, Hao-Wen Chiu, Thein Kyu Apr 2014

Phase Diagrams Of A Binary Smectic-A Mixture, Hao-Wen Chiu, Thein Kyu

Thein Kyu

A variety of smectic phase diagrams involving smectic-isotropic and smectic-nematic-isotropic transitions have been calculated based on a combination of Flory-Huggins (FH) theory for isotropic mixing and Maier-Saupe-McMillan (MSM) theory for smectic-A ordering of liquid crystals (LC). To describe the mesophase transitions, two nematic order parameters and two smectic order parameters have been coupled through the normalized orientation distribution and partition functions. Flory-Huggins interaction parameter (chi) for isotropic mixing and the coupling term involving the nematic interaction parameter (nu) and the McMillan smectic interaction parameter (alpha) for phase transitions of liquid crystals have been incorporated in the calculation. The predictive capability …


Compatibility Of Elastomers With Refrigerant Lubricant Mixtures, Gary Hamed, R. Seiple Apr 2014

Compatibility Of Elastomers With Refrigerant Lubricant Mixtures, Gary Hamed, R. Seiple

Gary R. Hamed

No abstract provided.


Observation Of Novel Liquid-Crystalline Phase Above The Bulk-Melting Temperature, Keshav Gautam, Satyendra Kumar, Didier Wermeille, Doug Robinson, Ali Dhinojwala Apr 2014

Observation Of Novel Liquid-Crystalline Phase Above The Bulk-Melting Temperature, Keshav Gautam, Satyendra Kumar, Didier Wermeille, Doug Robinson, Ali Dhinojwala

Ali Dhinojwala

In this paper, we show that a noncrystalline but ordered smectic-like phase exists above the bulk-melting temperature (T-m) at poly(n-alkyl acrylates)-air interface. The surface ordered phase is one monolayer thick and undergoes a sharp transition from order to disorder 10degreesC above T-m for n=22. The presence of a surface phase that does not exist in the bulk has important implications in the design of thermally responsive adhesives.


Statistical Mechanics Of Wormlike Polymers From A New Generating Function. Ii. The Force-Elongation Relationship, Gustavo Carri Apr 2014

Statistical Mechanics Of Wormlike Polymers From A New Generating Function. Ii. The Force-Elongation Relationship, Gustavo Carri

Gustavo A. Carri

No abstract provided.


Statistical Mechanics Of Worm-Like Polymers From A New Generating Function, Gustavo A. Carri, Marcelo Marucho Apr 2014

Statistical Mechanics Of Worm-Like Polymers From A New Generating Function, Gustavo A. Carri, Marcelo Marucho

Gustavo A. Carri

We present a mathematical approach to the worm-like chain model of semiflexible polymers. Our method is built on a novel generating function from which all the properties of the model can be derived. Moreover, this approach satisfies the local inextensibility constraint exactly. In this paper, we focus on the lowest order contribution to the generating function and derive explicit analytical expressions for the characteristic function, polymer propagator, single chain structure factor, and mean square end-to-end distance. These analytical expressions are valid for polymers with any degree of stiffness and contour length. We find that our calculations are able to capture …


Band Gap Engineering Of Ceo2 Nanostructure Using An Electrochemically Active Biofilm For Visible Light Applications, S A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Apr 2014

Band Gap Engineering Of Ceo2 Nanostructure Using An Electrochemically Active Biofilm For Visible Light Applications, S A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Narrowing the optical band gap of cerium oxide (CeO2) nanostructures is essential for visible light applications. This paper reports a green approach to enhance the visible light photocatalytic activity of pure CeO2 nanostructures (p-CeO2) through defect-induced band gap narrowing using an electrochemically active biofilm (EAB). X-ray diffraction, UV-visible diffuse reflectance/absorption spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy and high resolution transmission electron microscopy confirmed the defect-induced band gap narrowing of the CeO2 nanostructure (m-CeO2). The structural, optical, photocatalytic and photoelectrochemical properties also revealed the presence of structural defects caused by the reduction of Ce4+ to …