Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Gordon Wallace

2014

Carbon

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Mar 2014

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Gordon Wallace

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Mar 2014

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Gordon Wallace

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries have …


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Mar 2014

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Gordon Wallace

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Mar 2014

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Gordon Wallace

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.