Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap Aug 2017

New Flexible Channels For Room Temperature Tunneling Field Effect Transistors, Boyi Hao, Anjana Asthana, Paniz Khanmohammadi, Paul Bergstrom, Douglas R. Banyai, Madhusudan A. Savaikar, John A. Jaszczak, Yoke Khin Yap

Paul Bergstrom

Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various …


Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak Aug 2017

Simulation Of Charge Transport In Multi-Island Tunneling Devices: Application To Disordered One-Dimensional Systems At Low And High Biases, Madhusudan A. Savaikar, Douglas R. Banyai, Paul Bergstrom, John A. Jaszczak

Paul Bergstrom

Although devices have been fabricated displaying interesting single-electron transport characteristics, there has been limited progress in the development of tools that can simulate such devices based on their physical geometry over a range of bias conditions up to a few volts per junction. In this work, we present the development of a multi-island transport simulator, MITS, a simulator of tunneling transport in multi-island devices that takes into account geometrical and material parameters, and can span low and high source-drain biases. First, the capabilities of MITS are demonstrated by modeling experimentaldevices described in the literature, and showing that the simulated device …


Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck Aug 2017

Evaluation Of Commercial Nickel–Phosphorus Coating For Ultracold Neutron Guides Using A Pinhole Bottling Method, Robert W. Pattie, Evan R. Adamek, T. Brenner, A. Brandt, Leah J. Broussard, Nathan Callahan, Stephen M. Clayton, Chris Cude-Woods, Scott A. Currie, Peter Geltenbort, Takeyasu M. Ito, T. Lauer, Chenyu Liu, Jaroslaw Majewski, Mark F. Makela, Yasuhiro Masuda, Christopher L. Morris, John C. Ramsey, Daniel J. Salvat, Alexander Saunders, Juri Schroffenegger, Zebo Tang, Wanchun Wei, Zhehui Wang, Erik B. Watkins, Albert R. Young, B.A. Zeck

Robert W. Pattie Jr.

We report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be V F=213(5.2)neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle …


Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi Jul 2017

Comparing Experts And Novices In Solving Electrical Circuit Problems With The Help Of Eye-Tracking, David Rosengrant, Colin Thomson, Taha Mzoughi

David Rosengrant

In order to help introductory physics students understand and learn to solve problems with circuits, we must first understand how they differ from experts. This preliminary study focuses on problem-solving dealing with electrical circuits. We investigate difficulties novices have with circuits and compare their work with those of experts. We incorporate the use of an eye-tracker to investigate any possible differences or similarities on how experts and novices solve electrical circuit problems. Our results show similarities in gaze patterns among all subjects on the components of the circuit. We further found that experts would look back at the circuit while …


Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore Jun 2017

Comparing Multiple Turbulence Restoration Algorithms Performance On Noisy Anisoplanatic Imagery, Michael Armand Rucci, Russell C. Hardie, Alexander J. Dapore

Russell C. Hardie

In this paper, we compare the performance of multiple turbulence mitigation algorithms to restore imagery degraded by atmospheric turbulence and camera noise. In order to quantify and compare algorithm performance, imaging scenes were simulated by applying noise and varying levels of turbulence. For the simulation, a Monte-Carlo wave optics approach is used to simulate the spatially and temporally varying turbulence in an image sequence. A Poisson-Gaussian noise mixture model is then used to add noise to the observed turbulence image set. These degraded image sets are processed with three separate restoration algorithms: Lucky Look imaging, bispectral speckle imaging, and a …


Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay Jun 2017

Analysis Of Various Classification Techniques For Computer Aided Detection System Of Pulmonary Nodules In Ct, Barath Narayanan Narayanan, Russell C. Hardie, Temesguen Messay

Russell C. Hardie

Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie Jun 2017

Recursive Non-Local Means Filter For Video Denoising, Redha A. Ali, Russell C. Hardie

Russell C. Hardie

In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video …


Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore Jun 2017

Block Matching And Wiener Filtering Approach To Optical Turbulence Mitigation And Its Application To Simulated And Real Imagery With Quantitative Error Analysis, Russell C. Hardie, Michael Armand Rucci, Barry K. Karch, Alexander J. Dapore

Russell C. Hardie

We present a block-matching and Wiener filtering approach to atmospheric turbulence mitigation for long-range imaging of extended scenes. We evaluate the proposed method, along with some benchmark methods, using simulated and real-image sequences. The simulated data are generated with a simulation tool developed by one of the authors. These data provide objective truth and allow for quantitative error analysis. The proposed turbulence mitigation method takes a sequence of short-exposure frames of a static scene and outputs a single restored image. A block-matching registration algorithm is used to provide geometric correction for each of the individual input frames. The registered frames …


Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai Jun 2017

Simulation Of Anisoplanatic Imaging Through Optical Turbulence Using Numerical Wave Propagation With New Validation Analysis, Russell C. Hardie, Jonathan D. Power, Daniel A. Lemaster, Douglas R. Droege, Szymon Gladysz, Santasri Bose-Pillai

Russell C. Hardie

We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation …


Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch Jun 2017

Differential Tilt Variance Effects Of Turbulence In Imagery: Comparing Simulation With Theory, Daniel A. Lemaster, Russell C. Hardie, Szymon Gladysz, Matthew D. Howard, Michael Armand Rucci, Matthew E. Trippel, Jonathan D. Power, Barry K. Karch

Russell C. Hardie

Differential tilt variance is a useful metric for interpreting the distorting effects of turbulence in incoherent imaging systems. In this paper, we compare the theoretical model of differential tilt variance to simulations. Simulation is based on a Monte Carlo wave optics approach with split step propagation. Results show that the simulation closely matches theory. The results also show that care must be taken when selecting a method to estimate tilts.


Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick Mar 2017

Multi-Color Γ-Rays From Comb-Like Electron Beams Driven By Incoherent Stacks Of Laser Pulses, Serge Y. Kalmykov, X. Davoine, Isaac Ghebregziabher, Bradley A. Shadwick

Serge Youri Kalmykov

Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to
10^17 A/m^2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing …


Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia Feb 2017

Chiral Light Intrinsically Couples To Extrinsic/Pseudo-Chiral Metasurfaces Made Of Tilted Gold Nanowires, Alessandro Belardini, Marco Centini, Grigore Leahu, David C. Hooper, Roberto Li Voti, Eugenio Fazio, Joseph W. Haus, Andrew Sarangan, Ventsislav K. Valev, Concita Sibilia

Andrew Sarangan

Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic …


Practical Guide To The Realization Of A Convertible Optical Trapping System, Chenglong Zhao Feb 2017

Practical Guide To The Realization Of A Convertible Optical Trapping System, Chenglong Zhao

Chenglong Zhao

In this article, we provide a detailed guide to the construction of a convertible optical trapping system for either single-beam or counter-propagating trap. The single-beam trap maintains all the functionalities that a conventional optical tweezer has. While the counter-propagating trap allows for the trapping of particles that single-beam trap cannot handle. The counter-propagating trap can be easily switched to a single-beam trap, and vice versa. Therefore, this convertible optical trapping system allows for the trapping and manipulation of particles with a wide variety of sizes and materials.