Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

San Jose State University

2011

Heisenberg

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Thermodynamics And Phase Transitions For The Heisenberg Model On The Pinwheel Distorted Kagome Lattice, Ehsan Khatami, Rajiv Singh, Marcos Rigol Dec 2011

Thermodynamics And Phase Transitions For The Heisenberg Model On The Pinwheel Distorted Kagome Lattice, Ehsan Khatami, Rajiv Singh, Marcos Rigol

Faculty Publications

We study the Heisenberg model on the pinwheel distorted kagome lattice as observed in the material Rb2Cu3SnF12. Experimentally relevant thermodynamic properties at finite temperatures are computed utilizing numerical linked-cluster expansions. We also develop a Lanczos-based, zero-temperature, numerical linked-cluster expansion to study the approach of the pinwheel distorted lattice to the uniform kagome-lattice Heisenberg model. We find strong evidence for a phase transition before the uniform limit is reached, implying that the ground state of the kagome-lattice Heisenberg model is likely not pinwheel dimerized and is stable to finite pinwheel-dimerizing perturbations.


Thermodynamics Of The Antiferromagnetic Heisenberg Model On The Checkerboard Lattice, Ehsan Khatami, Maros Rigol Apr 2011

Thermodynamics Of The Antiferromagnetic Heisenberg Model On The Checkerboard Lattice, Ehsan Khatami, Maros Rigol

Faculty Publications

Employing numerical linked-cluster expansions (NLCEs) along with exact diagonalizations of finite clusters with periodic boundary condition, we study the energy, specific heat, entropy, and various susceptibilities of the antiferromagnetic Heisenberg model on the checkerboard lattice. NLCEs, combined with extrapolation techniques, allow us to access temperatures much lower than those accessible to exact diagonalization and other series expansions. We show that the high-temperature peak in specific heat decreases as the frustration increases, consistent with the large amount of unquenched entropy in the region around maximum classical frustration, where the nearest-neighbor and next-nearest-neighbor exchange interactions (J and J′, respectively) have the same …