Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

Applied sciences

Materials Science and Engineering

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu Aug 2016

Development Of A Novel Polymer-Garnet Solid State Composite Electrolyte Incorporating Li-La-Zr-Bi-O And Polyethylene Oxide, Muhammed Ramazan Oduncu

Open Access Theses

Current lithium ion batteries are comprised of organic liquid electrolytes - a mixture of lithium salts and binary solvents such as ethylene carbonate (EC) and dimethyl carbonate (DMC). The main drawbacks of this liquid mixture related to safety are flammability of the organic solvents and chemical instability with the electrode materials. To date, various ceramic and polymer materials have been considered which overcome safety issues. However, a common problem of these solid state materials is that they are not able to provide high ionic conductivity at ambient temperatures. Garnet-type cubic Li7La 3Zr2O12 ceramic material has attracted much interest because of …


Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp Aug 2016

Polymerizable Lipids For Controlled Functionalization Of Layered Materials, Kortney Kaye Rupp

Open Access Theses

Self-assembled monolayers (SAM’s) offer a straightforward approach to tailoring the interfacial properties of metals, metal oxides and semiconductors. Noncovalent functionalization of single-layer graphene offers the possibility to finely tune surface chemistry for future applications in electronics. Polymerization of photochemically reactive molecules in a lying-down phase has been used to increase the strength of intermolecular interactions between long alkanes and HOPG substrates. Long-chain fatty acid derivatives with internal diyne groups yield a conjugated ene-yne polymer upon UV irradiation. Diyne lipids with phosphocholine (diyne PC) and phosphoethanolamine (diyne PE) groups offer a charged form of the head group that is robust towards …


Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel Oct 2014

Digital Image Correlation Of Heterogeneous Deformations In Polycrystalline Material With Electron Backscatter Diffraction, Javier Esquivel

Open Access Theses

This work establishes the ability to conduct digital image correlation (DIC) investigations at varying length scales. DIC allows for a computational method of strain field measurements using multiple images to track random speckle patterns on material surfaces. The use of a powder silicon oxide speckle allows for high optical magnification correlation using conventional load frames. Self-assembling gold nanoparticles provide sub-micron resolution speckle patterns to study microstructure influences on deformation using scanning electron microscopy. The complex microstructure in aerospace grade aluminum and nickel-based superalloys, give rise to varied deformation fields, which can be studied using electron backscatter diffraction. Specimen preparation techniques, …


High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min Oct 2014

High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min

Open Access Theses

The mobility of Two-dimensional Electron Gas in AlGaAs/GaAs heterostructures that are grown in the Molecular Beam Epitaxy (MBE) can be increased by purification of the gallium used to grow the films. To attain 200 million cm2/Vs mobility, the impurity concentration of gallium should be reduced to below 1 ppb. The commercial 7N (99.99999%) gallium with 100 ppb total impurity is currently used in the MBE at Purdue University and is being purified by zone refining. To evaluate the commercial 7N gallium and establish the methodology for the impurity measurement after zone refining, germanium, iron, and zinc in 6N and 7N …


Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar Apr 2014

Cztsse Thin Film Solar Cells : Surface Treatments, Chinmay S. Joglekar

Open Access Theses

Chalcopyrite semiconducting materials, specifically CZTS, are a promising alternative to traditional silicon solar cell technology. Because of the high absorption coefficient; films of the order of 1 micrometer thickness are sufficient for the fabrication of solar cells. Liquid based synthesis methods are advantageous because they are easily scalable using the roll to roll manufacturing techniques.

Various treatments are explored in this study to enhance the performance of the selenized CZTS film based solar cells. Thiourea can be used as a sulfur source and can be used to tune band gap of CZTSSe. Bromine etching can be used to manipulate the …


Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu Apr 2014

Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu

Open Access Theses

The chemical and physical structure-property relationships of model superabsorbent polymer (SAP) hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+ , Ca2+ , and Al3+ ). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt.%) and covalent crosslinking densities of 1, 1.5, and 2 wt.%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels …


Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco Oct 2013

Response Of Plasma Facing Components In Tokamaks Due To Intense Energy Deposition Using Particle-In-Cell(Pic) Methods, Filippo Genco

Open Access Dissertations

Damage to plasma-facing components (PFC) due to various plasma instabilities is still a major concern for the successful development of fusion energy and represents a significant research obstacle in the community. It is of great importance to fully understand the behavior and lifetime expectancy of PFC under both low energy cycles during normal events and highly energetic events as disruptions, Edge-Localized Modes (ELM), Vertical Displacement Events (VDE), and Run-away electron (RE). The consequences of these high energetic dumps with energy fluxes ranging from 10 MJ/m2 up to 200 MJ/m2 applied in very short periods (0.1 to 5 ms) can be …


Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller Oct 2013

Utilizing Electron Microscopy And Spectroscopy Methods To Understand Water Structure And Water Doping, Lior Miller

Open Access Dissertations

Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities.

To fill this gap, this study utilizes a new direct method for characterization of water in the vapor …


Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng Oct 2013

Applicability Of Continuum Fracture Mechanics In Atomistic Systems, Shao-Huan Cheng

Open Access Dissertations

By quantitating the amplitude of the unbounded stress, the continuum fracture mechanics defines the stress intensity factor K to characterize the stress and displacement fields in the vicinity of the crack tip, thereby developing the relation between the stress singularity and surface energy (energy release rate G). This G-K relation, assigning physical meaning to the stress intensity factor, makes these two fracture parameters widely used in predicting the onset of crack propagation. However, due to the discrete nature of the atomistic structures without stress singularity, there might be discrepancy between the failure prediction and the reality of nanostructured materials. Defining …


Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng Jan 2013

Accurate Prediction Of Spectral Phonon Relaxation Time And Thermal Conductivity Of Intrinsic And Perturbed Materials, Tianli Feng

Open Access Theses

The prediction of spectral phonon relaxation time, mean-free-path, and thermal conductivity can provide significant insights into the thermal conductivity of bulk and nanomaterials, which are important for thermal management and thermoelectric applications. We perform frequency-domain normal mode analysis (NMA) on pure bulk argon and pure bulk germanium. Spectral phonon properties, including the phonon dispersion, relaxation time, mean free path, and thermal conductivity of argon and germanium at different temperatures have been calculated. We find the dependence of phonon relaxation time τ on frequency ω and temperature T vary from ~ω-1.3 to ~ω-1.8 and ~T-0.8 to ~T-1.8 …