Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Civil and Environmental Engineering

Water quality -- Mathematical models

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Modeling Cyanotoxin Production, Fate And Transport In Surface Waterbodies, Bernadel Rose Hintz Garstecki Jul 2021

Modeling Cyanotoxin Production, Fate And Transport In Surface Waterbodies, Bernadel Rose Hintz Garstecki

Dissertations and Theses

Cyanobacteria exist throughout the world and are frequently associated with forming toxic blooms. The toxins produced by cyanobacteria, cyanotoxins, are harmful to both humans and animals. Rising temperatures due to global climate change, increased nutrient loading, and other anthropogenic impacts on waterbodies are expected to increase the prevalence of cyanobacteria. It is vital that we protect our drinking water supplies and natural water resources. Modeling the production and movement of these toxins is an important step in limiting exposure to them and evaluating management strategies to mitigate their impact. Cyanotoxins are diverse and the conditions under which they are formed …


3d Hydrodynamic Model Development And Verification, Hussein A. M. Al-Zubaidi Jan 2016

3d Hydrodynamic Model Development And Verification, Hussein A. M. Al-Zubaidi

Civil and Environmental Engineering Master's Project Reports

A three-dimensional numerical model was developed to simulate hydrodynamic, temperature, and water quality distributions in rivers and lakes. In an attempt to get rid of the extra approximation and complexity, no coordinate transformation has been done and z-coordinate system has been employed. The governing equations are the continuity equation, free surface equation, momentum equations, and conservation equations of temperature and water quality. The model employs the time splitting technique which allows splitting the directions in which we end with two-dimensional governing equations and eventually the solution ends with a tri-diagonal matrix, which is easily solved by Thomas algorithm. The first …


Implementation Of A Sediment Transport Model For Ce-Qual-W2, Rachel Hanna Oct 2014

Implementation Of A Sediment Transport Model For Ce-Qual-W2, Rachel Hanna

Civil and Environmental Engineering Master's Project Reports

The CE-QUAL-W2 model, developed by Portland State University, simulates water quality and flow. Recommendations to expand on this model and have it include sediment transport are implemented in this report. Existing one-, two-, and three-dimensional models are reviewed and assessed for their sediment transport methodology. A laterally (width) averaged sediment concentration model is developed as an Upwind Center Space Scheme using CE-QUAL-W2 data. The scheme includes a method to calculate scour for sediment concentration and results of the model are shown for a simulated branch of the Spokane River.


Toward A Reliable Prediction Of Seasonal Forecast Uncertainty: Addressing Model And Initial Condition Uncertainty With Ensemble Data Assimilation And Sequential Bayesian Combination, Caleb Matthew Dechant, Hamid Moradkhani Jun 2014

Toward A Reliable Prediction Of Seasonal Forecast Uncertainty: Addressing Model And Initial Condition Uncertainty With Ensemble Data Assimilation And Sequential Bayesian Combination, Caleb Matthew Dechant, Hamid Moradkhani

Civil and Environmental Engineering Faculty Publications and Presentations

Uncertainties are an unfortunate yet inevitable part of any forecasting system. Within the context of seasonal hydrologic predictions, these uncertainties can be attributed to three causes: imperfect characterization of initial conditions, an incomplete knowledge of future climate and errors within computational models. This study proposes a method to account for all threes sources of uncertainty, providing a framework to reduce uncertainty and accurately convey persistent predictive uncertainty. In currently available forecast products, only a partial accounting of uncertainty is performed, with the focus primarily on meteorological forcing. For example, the Ensemble Streamflow Prediction (ESP) technique uses meteorological climatology to estimate …