Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen Jan 2011

Multipacting Analysis Of The Superconducting Parallel-Bar Cavity, Subashini De Silva, Jean R. Delayen

Physics Faculty Publications

The superconducting parallel-bar cavity [1] is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. Multipacting can be a limiting factor to the performance of in any superconducting structure. In the parallel-bar cavity the main contribution to the deflection is due to the transverse deflecting voltage, between the parallel bars, making the design potentially prone to multipacting. This paper presents the results of analytical calculations and numerical simulations of multipacting in the parallel-bar cavity with resonant voltage, impact energies and corresponding particle trajectories.


Design Of Superconducting Multi-Spoke Cavities For High Velocity Applications, C. S. Hopper, Jean R. Delayen Jan 2011

Design Of Superconducting Multi-Spoke Cavities For High Velocity Applications, C. S. Hopper, Jean R. Delayen

Physics Faculty Publications

Superconducting spoke cavities have been designed and tested for particle velocities up to β0 ~ 0.6 and are currently being designed for velocities up to β0 = 1. We present the electromagnetic designs for two-spoke cavities operating at 325 MHz for β0 = 0.82 and β0 = 1.


Higher Order Mode Properties Of Superconducting Two-Spoke Cavities, C. S. Hopper, Jean R. Delayen, R. G. Olave Jan 2011

Higher Order Mode Properties Of Superconducting Two-Spoke Cavities, C. S. Hopper, Jean R. Delayen, R. G. Olave

Physics Faculty Publications

Multi-Spoke cavities lack the cylindrical symmetry that many other cavity types have, which leads to a more complex Higher Order Mode (HOM) spectrum. In addition, spoke cavities offer a large velocity acceptance which means we must perform a detailed analysis of the particle velocity dependence for each mode's R/Q. We present here a study of the HOM properties of two-spoke cavities designed for high-velocity applications. Frequencies, R/Q and field profiles of HOMs have been calculated and are reported.


Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn Jan 2011

Experimental Results In Dis, Sidis And Des From Jefferson Lab, Sebastian E. Kuhn

Physics Faculty Publications

Jefferson Lab’s electron accelerator in its present incarnation, with a maximum beam energy slightly above 6 GeV, has already enabled a large number of experiments expanding our knowledge of nucleon and nuclear structure (especially in Deep Inelastic Scattering—DIS—at moderately high x, and in the resonance region). Several pioneering experiments have yielded first results on Deeply Virtual Compton Scattering (DVCS) and other Deep Exclusive Processes (DES), and the exploration of the rich landscape of transverse momentum‐dependent (TMD) structure functions using Semi‐Inclusive electron scattering (SIDIS) has begun. With the upgrade of CEBAF to 12 GeV now underway, a significantly larger kinematic …