Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physical Sciences and Mathematics

Solutions For Fermi Questions, March 2019: Question 1: I'M Stoked!; Question 2: Geckos, Larry Weinstein Jan 2019

Solutions For Fermi Questions, March 2019: Question 1: I'M Stoked!; Question 2: Geckos, Larry Weinstein

Physics Faculty Publications

The article presents questions and answers concerning the maximum power that a coal-power steam engine can attain and the number of geckos needed to lift a glass window pane and a plate-glass window.


Quantifying The Concentration And Penetration Depth Of Long-Lived Rons In Plasma Activated Water By Uv Absorption Spectroscopy, Zhijie Liu, Chunxi Zhou, Dingxin Liu, Tongtong He, Li Guo, Dehui Xu, Michael G. Kong Jan 2019

Quantifying The Concentration And Penetration Depth Of Long-Lived Rons In Plasma Activated Water By Uv Absorption Spectroscopy, Zhijie Liu, Chunxi Zhou, Dingxin Liu, Tongtong He, Li Guo, Dehui Xu, Michael G. Kong

Bioelectrics Publications

Reactive oxygen and reactive nitrogen species (RONS) are believed to play a key role in biomedical applications, which means that RONS must reach the target tissue to produce a therapeutic effect. Existing methods (electron spin spectrometry and microplate reading) to determine the RONS concentration are not suitable for experimental real-time measurements because they require adding an indicating reagent to the plasma-treated medium, which may alter the chemical composition of the medium. In this paper, we propose a method to measure the long-lived RONS concentration in plasma-activated water (PAW) by using UV absorption spectroscopy. Based on an analysis and fit of …


Investigation On The Rons And Bactericidal Effects Induced By He + O2 Cold Plasma Jets: In Open Air And In An Airtight Chamber, Han Xu, Dingxin Liu, Weitao Wang, Zhijie Liu, Li Guo, Mingzhe Rong, Michael G. Kong Nov 2018

Investigation On The Rons And Bactericidal Effects Induced By He + O2 Cold Plasma Jets: In Open Air And In An Airtight Chamber, Han Xu, Dingxin Liu, Weitao Wang, Zhijie Liu, Li Guo, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

He + O2 plasma jets in open air and in an airtight chamber are comparatively studied, with respect to their production of gaseous/aqueous reactive species and their antibacterial effects. Under the same discharge power, the plasma jet in open air has higher densities of gaseous reactive species and a higher concentration of aqueous H2O2 but lower concentrations of aqueous OH and O2-. In addition, the increase in the O2 ratio in He in both plasma jets causes a linear decrease in the population of gaseous reactive species, except for O(3p5P) …


Interpreting Mosaics Of Ocean Biogeochemistry, Andrea Fassbender, A. Bourbonnais, Sophie Clayton, P. Gaube, M. Ormand, P.J.S. Franks, M. A. Altabet, D.J. Mcgillicuddy Jr. Jan 2018

Interpreting Mosaics Of Ocean Biogeochemistry, Andrea Fassbender, A. Bourbonnais, Sophie Clayton, P. Gaube, M. Ormand, P.J.S. Franks, M. A. Altabet, D.J. Mcgillicuddy Jr.

OES Faculty Publications

Advances in technology and modeling capabilities are driving a surge in progress in our understanding of how ocean ecosystems mix and mingle on medium to small scales.


Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western Jan 2015

Note: Improved Line Strengths Of Rovibrational And Rotational Transitions Within The X3Σ⁻ Ground State Of Nh, James S.A. Brooke, Peter F. Bernath, Colin M. Western

Chemistry & Biochemistry Faculty Publications

Recently, a line list including positions and transition strengths was published for the NH X3Σ rovibrational and rotational transitions. The calculation of the transition strengths requires a conversion of transition matrix elements from Hund’s case (b) to (a). The method of this conversion has recently been improved during other work on the OH X2Π rovibrational transitions, by removing an approximation that was present previously. The adjusted method has been applied to the NH line list, resulting in more accurate transition strengths. An updated line list is presented that contains all possible transitions with v′ and …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Excimer Emission From Cathode Boundary Layer Discharges, Mohamed Moselhy, Karl H. Schoenbach Jan 2004

Excimer Emission From Cathode Boundary Layer Discharges, Mohamed Moselhy, Karl H. Schoenbach

Bioelectrics Publications

The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the “cathode boundary layer” plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for …


Argon Eximer Emission From High-Pressure Microdischarges In Mental Capillaries, R. Mohan Sankaran, Konstantinos P. Giapis, Mohamed Moselhy, Karl H. Schoenbach Jan 2003

Argon Eximer Emission From High-Pressure Microdischarges In Mental Capillaries, R. Mohan Sankaran, Konstantinos P. Giapis, Mohamed Moselhy, Karl H. Schoenbach

Bioelectrics Publications

We report on argon excimer emission from high-pressure microdischarges formed inside metal capillaries with or without gas flow. Excimer emission intensity from a single tube increases linearly with gas pressure between 400 and 1000 Torr. Higher discharge current also results in initial intensity gains until gas heating causes saturation or intensity drop. Argon flow through the discharge intensifies emission perhaps by gas cooling. Emission intensity was found to be additive in prealigned dual microdischarges, suggesting that an array of microdischarges could produce a high-intensity excimer source.


Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach Jan 2003

Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach

Bioelectrics Publications

We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line at 130.5 nm. …


Resonant Energy Transfer From Argon Dimers To Atomic Oxygen In Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz Jan 2001

Resonant Energy Transfer From Argon Dimers To Atomic Oxygen In Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz

Bioelectrics Publications

The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes.


Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz Jan 2001

Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz

Bioelectrics Publications

By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Microhollow Cathode Discharge Excimer Lamps, Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, Robert H. Stark Jan 2000

Microhollow Cathode Discharge Excimer Lamps, Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, Robert H. Stark

Bioelectrics Publications

Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power …


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 μm, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6% …


Microhollow Cathode Discharges, K. H. Schoenbach, R. Verhappen, R. Tessnow, F. E. Peterkin, W. W. Byszewski Jan 1996

Microhollow Cathode Discharges, K. H. Schoenbach, R. Verhappen, R. Tessnow, F. E. Peterkin, W. W. Byszewski

Bioelectrics Publications

The current–voltage characteristics of hollow cathode discharges and their predischarges in argon under dc and pulsed conditions were found to have a positive slope at pressures up to approximately 50 Torr, and currents up to 20 mA, at a hole diameter of 0.7 mm. In this range of pressure and current, parallel operation of hollow cathode discharges, without ballast, was demonstrated. Scaling to higher pressure is possible by reducing the hole diameter. Pulsed experiments with an array of cathode rings of 75 μm diameter allowed us to obtain parallel operation of more than 50 discharges at a pressure of 350 …


Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow Jan 1993

Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow

Bioelectrics Publications

An expression for the breakdown voltage of a one‐dimensional hollow cathode discharge has been derived. The breakdown condition which corresponds to Paschen’s law contains, in addition to the first Townsend coefficient, and the secondary electron emission coefficient two parameters which characterize the reflecting action of the electric field and the lifetime of the electrons in the discharge. The breakdown voltage for a hollow cathode discharge in helium was calculated and compared to that of a glow discharge operating under similar conditions.


Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp Jan 1982

Picosecond Laser Pulse Irradiation Of Crystalline Silicon, K. L. Merkle, H. Baumgart, R.H. Uebbing, F. Phillipp

Electrical & Computer Engineering Faculty Publications

Morphology changes introduced by picosecond laser pulses at λ = 532 nm and 355 nm in (111) and (100) silicon samples are studied by means of optical and high-voltage electron microscopy. Depending on energy fluence, orientation and wavelength, amorphous or highly defective regions may be created. From an analysis of damage thresholds and damage depth distributions it is concluded that melting and energy confinement precedes the formation of the structural changes.


Luminescence In Slipped And Dislocation-Free Laser-Annealed Silicon, R.H. Uebbing, P. Wagner, H. Baumgart, H. J. Queisser Jan 1980

Luminescence In Slipped And Dislocation-Free Laser-Annealed Silicon, R.H. Uebbing, P. Wagner, H. Baumgart, H. J. Queisser

Electrical & Computer Engineering Faculty Publications

Photoluminescence of cw laser-annealed silicon shows a dramatic difference in electronic behavior of the reconstructed material depending upon either creation or suppression of dislocations. Beyond a critical exposure time slip appears, and the luminescence of these samples is dominated by dislocation-related defect levels.