Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker Jul 1998

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.


Factorization For High-Energy Scattering, Ian Balitsky Jan 1998

Factorization For High-Energy Scattering, Ian Balitsky

Physics Faculty Publications

I demonstrate that the amplitude for the high-energy scattering can be factorized into a product of two independent functional integrals over “fast” and “slow” fields which interact by means of Wilson-line operators—gauge factors ordered along the straight lines.


Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky Jan 1998

Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky

Physics Faculty Publications

The author demonstrates that the amplitude of the high-energy scattering can be factorized in a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators -- infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering.