Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of Observed And Simulated Drop Size Distributions From Large Eddy Simulations With Bin Microphysics, Mikael K. White, Patrick Y. Chuang, Orlando Ayala, Lian-Ping Wang, Graham Feingold Jan 2019

Comparison Of Observed And Simulated Drop Size Distributions From Large Eddy Simulations With Bin Microphysics, Mikael K. White, Patrick Y. Chuang, Orlando Ayala, Lian-Ping Wang, Graham Feingold

Engineering Technology Faculty Publications

Two case studies of marine stratocumulus (one nocturnal and drizzling, the other daytime and nonprecipitating) are simulated by the UCLA large-eddy simulation model with bin microphysics for comparison with aircraft in situ observations. A high-bin-resolution variant of the microphysics is implemented for closer comparison with cloud drop size distribution (DSD) observations and a turbulent collision–coalescence kernel to evaluate the role of turbulence on drizzle formation. Simulations agree well with observational constraints, reproducing observed thermodynamic profiles (i.e., liquid water potential temperature and total moisture mixing ratio) as well as liquid water path. Cloud drop number concentration and liquid water content profiles …


Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang Jan 2015

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang

Engineering Technology Faculty Publications

In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope ["An examination of forcing in direct numerical simulations of turbulence," Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds …


Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski Jan 2015

Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski

Engineering Technology Faculty Publications

Within the context of heavy particles suspended in a turbulent airflow, we study the effects of gravity on acceleration statistics and radial relative velocity (RRV) of inertial particles. The turbulent flow is simulated by direct numerical simulation (DNS) on a 2563 grid and the dynamics of O(106) inertial particles by the point-particle approach. For particles/droplets with radius from 10 to 60 µm, we found that the gravity plays an important role in particle acceleration statistics: (a) a peak value of particle acceleration variance appears in both the horizontal and vertical directions at a particle Stokes number …


Kinematic And Dynamic Pair Collision Statistics Of Sedimenting Inertial Particles Relevant To Warm Rain Initiation, Bogdan Rosa, Hossein Parishani, Orlando Ayala, Lian-Ping Wang, Wojciech W. Grabowski Jan 2011

Kinematic And Dynamic Pair Collision Statistics Of Sedimenting Inertial Particles Relevant To Warm Rain Initiation, Bogdan Rosa, Hossein Parishani, Orlando Ayala, Lian-Ping Wang, Wojciech W. Grabowski

Engineering Technology Faculty Publications

In recent years, direct numerical simulation (DNS) approach has become a reliable tool for studying turbulent collision-coalescence of cloud droplets relevant to warm rain development. It has been shown that small-scale turbulent motion can enhance the collision rate of droplets by either enhancing the relative velocity and collision efficiency or by inertia-induced droplet clustering. A hybrid DNS approach incorporating DNS of air turbulence, disturbance flows due to droplets, and droplet equation of motion has been developed to quantify these effects of air turbulence. Due to the computational complexity of the approach, a major challenge is to increase the range of …