Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano Jan 2021

Cylindrical Magnetron Development For Nb₃Sn Deposition Via Magnetron Sputtering, Md. Nizam Sayeed, Hani Elsayed-Ali, C. Côté, M. A. Farzad, A. Sarkissian, G. V. Eremeev, A-M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Due to its better superconducting properties (critical temperature Tc~ 18.3 K, superheating field Hsh~ 400 mT), Nb3Sn is considered as a potential alternative to niobium (Tc~ 9.25 K, Hsh~ 200 mT) for superconducting radiofrequency (SRF) cavities for particle acceleration. Magnetron sputtering is an effective method to produce superconducting Nb3Sn films. We deposited superconducting Nb3Sn films on samples with magnetron sputtering using co-sputtering, sequential sputtering, and sputtering from a stoichiometric target. Nb3Sn films produced by magnetron sputtering in our previous experiments have achieved DC superconducting critical temperature up to …


Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Using Ai For Management Of Field Emission In Srf Linacs, A. Carpenter, P. Degtiarenko, R. Suleiman, C. Tennant, D. Turner, L. S. Vidyaratne, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

Field emission control, mitigation, and reduction is critical for reliable operation of high gradient superconducting radio-frequency (SRF) accelerators. With the SRF cavities at high gradients, the field emission of electrons from cavity walls can occur and will impact the operational gradient, radiological environment via activated components, and reliability of CEBAF’s two linacs. A new effort has started to minimize field emission in the CEBAF linacs by re-distributing cavity gradients. To measure radiation levels, newly designed neutron and gamma radiation dose rate monitors have been installed in both linacs. Artificial intelligence (AI) techniques will be used to identify cavities with high …


Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered …