Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning-Based Event Generator, Yasir Alanazi Dec 2022

Machine Learning-Based Event Generator, Yasir Alanazi

Computer Science Theses & Dissertations

Monte Carlo-based event generators have been the primary source for simulating particle collision experiments for the study of interesting physics scenarios. Monte Carlo generators rely on theoretical assumptions, which limit their ability to capture the full range of possible correlations between particle’s momenta. In addition, the simulations of the complete pipeline often take minutes to generate a single event even with the help of supercomputers.

In recent years, much attention has been devoted to the development of machine learning event generators. They demonstrate attractive advantages, including fast simulations, data compression, and being agnostic of theoretical assumptions. However, most of the …


A Relevance Model For Threat-Centric Ranking Of Cybersecurity Vulnerabilities, Corren G. Mccoy Dec 2022

A Relevance Model For Threat-Centric Ranking Of Cybersecurity Vulnerabilities, Corren G. Mccoy

Computer Science Theses & Dissertations

The relentless and often haphazard process of tracking and remediating vulnerabilities is a top concern for cybersecurity professionals. The key challenge they face is trying to identify a remediation scheme specific to in-house, organizational objectives. Without a strategy, the result is a patchwork of fixes applied to a tide of vulnerabilities, any one of which could be the single point of failure in an otherwise formidable defense. This means one of the biggest challenges in vulnerability management relates to prioritization. Given that so few vulnerabilities are a focus of real-world attacks, a practical remediation strategy is to identify vulnerabilities likely …


Towards Privacy And Security Concerns Of Adversarial Examples In Deep Hashing Image Retrieval, Yanru Xiao Dec 2022

Towards Privacy And Security Concerns Of Adversarial Examples In Deep Hashing Image Retrieval, Yanru Xiao

Computer Science Theses & Dissertations

With the explosive growth of images on the internet, image retrieval based on deep hashing attracts spotlights from both research and industry communities. Empowered by deep neural networks (DNNs), deep hashing enables fast and accurate image retrieval on large-scale data. However, inheriting from deep learning, deep hashing remains vulnerable to specifically designed input, called adversarial examples. By adding imperceptible perturbations on inputs, adversarial examples fool DNNs to make wrong decisions. The existence of adversarial examples not only raises security concerns for real-world deep learning applications, but also provides us with a technique to confront malicious applications.

In this dissertation, we …


Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan Aug 2022

Evaluation Of Generative Models For Predicting Microstructure Geometries In Laser Powder Bed Fusion Additive Manufacturing, Andy Ramlatchan

Computer Science Theses & Dissertations

In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex …


Using Ensemble Learning Techniques To Solve The Blind Drift Calibration Problem, Devin Scott Drake Aug 2022

Using Ensemble Learning Techniques To Solve The Blind Drift Calibration Problem, Devin Scott Drake

Computer Science Theses & Dissertations

Large sets of sensors deployed in nearly every practical environment are prone to drifting out of calibration. This drift can be sensor-based, with one or several sensors falling out of calibration, or system-wide, with changes to the physical system causing sensor-reading issues. Recalibrating sensors in either case can be both time and cost prohibitive. Ideally, some technique could be employed between the sensors and the final reading that recovers the drift-free sensor readings. This paper covers the employment of two ensemble learning techniques — stacking and bootstrap aggregation (or bagging) — to recover drift-free sensor readings from a suite of …


Transparscit: A Transformer-Based Citation Parser Trained On Large-Scale Synthesized Data, Md Sami Uddin May 2022

Transparscit: A Transformer-Based Citation Parser Trained On Large-Scale Synthesized Data, Md Sami Uddin

Computer Science Theses & Dissertations

Accurately parsing citation strings is key to automatically building large-scale citation graphs, so a robust citation parser is an essential module in academic search engines. One limitation of the state-of-the-art models (such as ParsCit and Neural-ParsCit) is the lack of a large-scale training corpus. Manually annotating hundreds of thousands of citation strings is laborious and time-consuming. This thesis presents a novel transformer-based citation parser by leveraging the GIANT dataset, consisting of 1 billion synthesized citation strings covering over 1500 citation styles. As opposed to handcrafted features, our model benefits from word embeddings and character-based embeddings by combining the bidirectional long …